Concrete analysis of approximate ideal-SIVP to decision ring-LWE reduction

Author:

Koblitz Neal1,Samajder Subhabrata2,Sarkar Palash3,Singha Subhadip3

Affiliation:

1. University of Washington, USA

2. Indraprastha Institute of Information Technology, India

3. Indian Statistical Institute, India

Abstract

<p style='text-indent:20px;'>A seminal 2013 paper by Lyubashevsky, Peikert, and Regev proposed basing post-quantum cryptography on ideal lattices and supported this proposal by giving a polynomial-time security reduction from the approximate Shortest Independent Vectors Problem (SIVP) to the Decision Learning With Errors (DLWE) problem in ideal lattices. We give a concrete analysis of this multi-step reduction. We find that the tightness gap in the reduction is so great as to vitiate any meaningful security guarantee, and we find reasons to doubt the feasibility in the foreseeable future of the quantum part of the reduction. In addition, when we make the reduction concrete it appears that the approximation factor in the SIVP problem is far larger than expected, a circumstance that causes the corresponding approximate-SIVP problem most likely not to be hard for proposed cryptosystem parameters. We also discuss implications for systems such as Kyber and SABER that are based on module-DLWE.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference42 articles.

1. E. Alkim, J. W. Bos, et al., \begin{document}$ {\sf FrodoKEM}$\end{document} : Learning With Errors Key Encapsulation Algorithm Specifications and Supporting Documentation, https://frodokem.org/files/FrodoKEM-specification-20210604.pdf, 2021, Accessed on April 28, 2022.

2. E. Alkim, L. Ducas, T. Pöppelmann and P. Schwabe, Post-quantum key exchange – a new hope, Cryptology ePrint Archive, (2015), https://ia.cr/2015/1092.

3. R. Avanzi, J. Bos, L. Ducas, et al., CRYSTALS-Kyber (version 3.02) – submission to round 3 of the NIST post-quantum project, specification document (update from august 2021), 2021-08-04, https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Kyber-Round3.zip, accessed on September 19, 2022.

4. W. Banaszczyk.New bounds in some transference theorems in the geometry of numbers, Math. Ann., 296 (1993), 625-635.

5. M. Bellare.Practice-oriented provable-security, International Workshop on Information Security, 1396 (1997), 221-231.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concrete Security from Worst-Case to Average-Case Lattice Reductions;Progress in Cryptology - AFRICACRYPT 2023;2023

2. NTRU in Quaternion Algebras of Bounded Discriminant;Post-Quantum Cryptography;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3