Author:
Gao Yanyan,Yue Qin,Huang Xinmei,Yang Yun
Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \Bbb F_{2^m} $\end{document}</tex-math></inline-formula> be a finite extension of the field <inline-formula><tex-math id="M2">\begin{document}$ \Bbb F_2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ g(x) = x^2+\alpha x+1 $\end{document}</tex-math></inline-formula> a quadratic polynomial over <inline-formula><tex-math id="M4">\begin{document}$ \Bbb F_{2^m} $\end{document}</tex-math></inline-formula>. In this paper, two classes of cyclic extended double-error-correcting Goppa codes are proposed. We obtain the following two classes of Goppa codes: (1) cyclic extended Goppa code with the irreducible polynomial <inline-formula><tex-math id="M5">\begin{document}$ g(x) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ L = \Bbb F_{2^m}\cup \{\infty\} $\end{document}</tex-math></inline-formula>; (2) cyclic extended Goppa code with the reducible polynomial <inline-formula><tex-math id="M7">\begin{document}$ g(x) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ |L'| = 2^m-1 $\end{document}</tex-math></inline-formula>. In addition, the parameters of above cyclic extended Goppa codes are given.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献