Abstract
<p style='text-indent:20px;'>In this article, we mainly study the polycyclic codes over <inline-formula><tex-math id="M2">\begin{document}$ S $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ S = \mathbb{F}_q+u\mathbb{F}_q $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ u^2 = u $\end{document}</tex-math></inline-formula>. First, the annihilator self-dual codes, annihilator self-orthogonal codes and annihilator <inline-formula><tex-math id="M5">\begin{document}$ {{{\rm{LCD}}}} $\end{document}</tex-math></inline-formula> codes over <inline-formula><tex-math id="M6">\begin{document}$ S $\end{document}</tex-math></inline-formula> are also introduced and studied. Next, we define a Gray map from <inline-formula><tex-math id="M7">\begin{document}$ S^n $\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id="M8">\begin{document}$ \mathbb{F}^{2n}_q $\end{document}</tex-math></inline-formula> and investigate the structure properties of polycyclic codes over <inline-formula><tex-math id="M9">\begin{document}$ S $\end{document}</tex-math></inline-formula> using the decomposition method. The Hamming distances of the Gray images are also determined by their decompositions. Finally, we obtain some good codes based on the results.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献