New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm
-
Published:2022
Issue:0
Volume:0
Page:0
-
ISSN:1930-5346
-
Container-title:Advances in Mathematics of Communications
-
language:
-
Short-container-title:AMC
Author:
Korban Adrian1, Sahinkaya Serap2, Ustun Deniz3
Affiliation:
1. Department of Physical, Mathematical and Engineering Sciences, University of Chester, Exton Park, Chester CH1 4AR, England 2. Tarsus University, Faculty of Engineering, Department of Natural and Mathematical Sciences, Mersin, Turkey 3. Tarsus University, Faculty of Engineering, Department of Computer Engineering, Mersin, Turkey
Abstract
<p style='text-indent:20px;'>In this paper, a new search technique based on a virus optimisation algorithm is proposed for calculating the neighbours of binary self-dual codes. The aim of this new technique is to calculate neighbours of self-dual codes without reducing the search field in the search process (this technique is known in the literature due to the computational time constraint) but still obtaining results in a reasonable time (significantly faster when compared to the standard linear computational search). We employ this new search algorithm to the well-known neighbour method and its extension, the <inline-formula><tex-math id="M1">\begin{document}$ k^{th} $\end{document}</tex-math></inline-formula>-range neighbours, and search for binary <inline-formula><tex-math id="M2">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes. In particular, we present six generator matrices of the form <inline-formula><tex-math id="M3">\begin{document}$ [I_{36} \ | \ \tau_6(v)], $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M4">\begin{document}$ I_{36} $\end{document}</tex-math></inline-formula> is the <inline-formula><tex-math id="M5">\begin{document}$ 36 \times 36 $\end{document}</tex-math></inline-formula> identity matrix, <inline-formula><tex-math id="M6">\begin{document}$ v $\end{document}</tex-math></inline-formula> is an element in the group matrix ring <inline-formula><tex-math id="M7">\begin{document}$ M_6(\mathbb{F}_2)G $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ G $\end{document}</tex-math></inline-formula> is a finite group of order 6, to which we employ the proposed algorithm and search for binary <inline-formula><tex-math id="M9">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes directly over the finite field <inline-formula><tex-math id="M10">\begin{document}$ \mathbb{F}_2 $\end{document}</tex-math></inline-formula>. We construct 1471 new Type I binary <inline-formula><tex-math id="M11">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes with the rare parameters <inline-formula><tex-math id="M12">\begin{document}$ \gamma = 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32 $\end{document}</tex-math></inline-formula> in their weight enumerators.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference26 articles.
1. W. Bosma, J. Cannon, C. Playoust.The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265. 2. J. R. Cuevas, H. J. Wang, Y. C. Lai and Y. C. Liang, Virus optimization algorithm: A novel metaheuristic for solving continuous optimization problems, The 10th Asia Pacific Industrial Engineering Management System Conference, (2009), 2166–2174. 3. S. T. Dougherty.The neighbor graph of binary self-dual codes, Des. Codes and Cryptogr., 90 (2022), 409-425. 4. S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over frobenius rings, Cryptogr. Commun., 12, (2020), 127–146. 5. S. T. Dougherty, J. Gildea, A. Korban, A. Kaya.Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Commun., 14 (2020), 677-702.
|
|