New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm

Author:

Korban Adrian1,Sahinkaya Serap2,Ustun Deniz3

Affiliation:

1. Department of Physical, Mathematical and Engineering Sciences, University of Chester, Exton Park, Chester CH1 4AR, England

2. Tarsus University, Faculty of Engineering, Department of Natural and Mathematical Sciences, Mersin, Turkey

3. Tarsus University, Faculty of Engineering, Department of Computer Engineering, Mersin, Turkey

Abstract

<p style='text-indent:20px;'>In this paper, a new search technique based on a virus optimisation algorithm is proposed for calculating the neighbours of binary self-dual codes. The aim of this new technique is to calculate neighbours of self-dual codes without reducing the search field in the search process (this technique is known in the literature due to the computational time constraint) but still obtaining results in a reasonable time (significantly faster when compared to the standard linear computational search). We employ this new search algorithm to the well-known neighbour method and its extension, the <inline-formula><tex-math id="M1">\begin{document}$ k^{th} $\end{document}</tex-math></inline-formula>-range neighbours, and search for binary <inline-formula><tex-math id="M2">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes. In particular, we present six generator matrices of the form <inline-formula><tex-math id="M3">\begin{document}$ [I_{36} \ | \ \tau_6(v)], $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M4">\begin{document}$ I_{36} $\end{document}</tex-math></inline-formula> is the <inline-formula><tex-math id="M5">\begin{document}$ 36 \times 36 $\end{document}</tex-math></inline-formula> identity matrix, <inline-formula><tex-math id="M6">\begin{document}$ v $\end{document}</tex-math></inline-formula> is an element in the group matrix ring <inline-formula><tex-math id="M7">\begin{document}$ M_6(\mathbb{F}_2)G $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ G $\end{document}</tex-math></inline-formula> is a finite group of order 6, to which we employ the proposed algorithm and search for binary <inline-formula><tex-math id="M9">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes directly over the finite field <inline-formula><tex-math id="M10">\begin{document}$ \mathbb{F}_2 $\end{document}</tex-math></inline-formula>. We construct 1471 new Type I binary <inline-formula><tex-math id="M11">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes with the rare parameters <inline-formula><tex-math id="M12">\begin{document}$ \gamma = 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32 $\end{document}</tex-math></inline-formula> in their weight enumerators.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3