Correcting adversarial errors with generalized regenerating codes

Author:

Karimi Negin,Darani Ahmad Yousefian,Greferath Marcus

Abstract

<p style='text-indent:20px;'>Traditional regenerating codes are efficient tools to optimize both storage and repair bandwidth in storing data across a distributed storage system, particularly in comparison to erasure codes and data replication. In traditional regenerating codes, the collection of any <inline-formula><tex-math id="M1">\begin{document}$ k $\end{document}</tex-math></inline-formula> nodes can reconstruct all stored information and is called the reconstruction set, <inline-formula><tex-math id="M2">\begin{document}$ \aleph _R $\end{document}</tex-math></inline-formula>. A failed node can be regenerated from any <inline-formula><tex-math id="M3">\begin{document}$ d $\end{document}</tex-math></inline-formula> surviving nodes. These collections of <inline-formula><tex-math id="M4">\begin{document}$ d $\end{document}</tex-math></inline-formula> nodes are called the regeneration sets, <inline-formula><tex-math id="M5">\begin{document}$ \aleph _H $\end{document}</tex-math></inline-formula>. The number of reconstruction sets and the number of regeneration sets satisfy <inline-formula><tex-math id="M6">\begin{document}$ |\aleph _R| = C_n^k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ |\aleph _H| = C_{n-1}^d $\end{document}</tex-math></inline-formula>. In generalized regenerating codes, we will have, <inline-formula><tex-math id="M8">\begin{document}$ 1\le|\aleph_R|\le C^k_n $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ 1\le|\aleph_H|\le C_{n-1}^d $\end{document}</tex-math></inline-formula>. In this paper, we address the problem of secure generalized regenerating codes and present a coding scheme by focusing on the features of the generalized regenerating codes that protects data in the distributed storage system in presence of an active omniscient adversary. This adversary can maliciously alter the data stored on the nodes under its control and send erroneous outgoing message when contacted for the repair of failed nodes. In our scheme notwithstanding the presence of an adversary in distributed storage system, a data collector can still obtain the original file using a classical minimum distance decoder.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Reference19 articles.

1. R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage and G. M. Voelker, Total recall: System support for automated availability management, Proc. of the Symposium on Networked Systems Design and Implementation, NSDI (2004).

2. N. Cai, R. Yeung.Secure network coding on a wiretap network, IEEE Trans. Inform. Theory, 57 (2010), 424-435.

3. N. Cai, R. W. Yeung.Network error correction, II: Lower bounds, Commun. Inf. Syst., 6 (2006), 37-54.

4. Y. Desmedt, Unconditionally private and reliable communication in an untrusted network, Theory and Practice in Information-Theoretic Security, Information Theory Workshop on., IEEE (2005) 38–41.

5. A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, K. Ramchandran.Network coding for distributed storage systems, IEEE Trans. Inform. Theory, 56 (2007), 4539-4551.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3