Correcting adversarial errors with generalized regenerating codes
-
Published:2022
Issue:0
Volume:0
Page:0
-
ISSN:1930-5346
-
Container-title:Advances in Mathematics of Communications
-
language:
-
Short-container-title:AMC
Author:
Karimi Negin,Darani Ahmad Yousefian,Greferath Marcus
Abstract
<p style='text-indent:20px;'>Traditional regenerating codes are efficient tools to optimize both storage and repair bandwidth in storing data across a distributed storage system, particularly in comparison to erasure codes and data replication. In traditional regenerating codes, the collection of any <inline-formula><tex-math id="M1">\begin{document}$ k $\end{document}</tex-math></inline-formula> nodes can reconstruct all stored information and is called the reconstruction set, <inline-formula><tex-math id="M2">\begin{document}$ \aleph _R $\end{document}</tex-math></inline-formula>. A failed node can be regenerated from any <inline-formula><tex-math id="M3">\begin{document}$ d $\end{document}</tex-math></inline-formula> surviving nodes. These collections of <inline-formula><tex-math id="M4">\begin{document}$ d $\end{document}</tex-math></inline-formula> nodes are called the regeneration sets, <inline-formula><tex-math id="M5">\begin{document}$ \aleph _H $\end{document}</tex-math></inline-formula>. The number of reconstruction sets and the number of regeneration sets satisfy <inline-formula><tex-math id="M6">\begin{document}$ |\aleph _R| = C_n^k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ |\aleph _H| = C_{n-1}^d $\end{document}</tex-math></inline-formula>. In generalized regenerating codes, we will have, <inline-formula><tex-math id="M8">\begin{document}$ 1\le|\aleph_R|\le C^k_n $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ 1\le|\aleph_H|\le C_{n-1}^d $\end{document}</tex-math></inline-formula>. In this paper, we address the problem of secure generalized regenerating codes and present a coding scheme by focusing on the features of the generalized regenerating codes that protects data in the distributed storage system in presence of an active omniscient adversary. This adversary can maliciously alter the data stored on the nodes under its control and send erroneous outgoing message when contacted for the repair of failed nodes. In our scheme notwithstanding the presence of an adversary in distributed storage system, a data collector can still obtain the original file using a classical minimum distance decoder.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference19 articles.
1. R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage and G. M. Voelker, Total recall: System support for automated availability management, Proc. of the Symposium on Networked Systems Design and Implementation, NSDI (2004).
2. N. Cai, R. Yeung.Secure network coding on a wiretap network, IEEE Trans. Inform. Theory, 57 (2010), 424-435.
3. N. Cai, R. W. Yeung.Network error correction, II: Lower bounds, Commun. Inf. Syst., 6 (2006), 37-54.
4. Y. Desmedt, Unconditionally private and reliable communication in an untrusted network, Theory and Practice in Information-Theoretic Security, Information Theory Workshop on., IEEE (2005) 38–41.
5. A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, K. Ramchandran.Network coding for distributed storage systems, IEEE Trans. Inform. Theory, 56 (2007), 4539-4551.