Linear complementary dual codes and double circulant codes over a semi-local ring
-
Published:2022
Issue:0
Volume:0
Page:0
-
ISSN:1930-5346
-
Container-title:Advances in Mathematics of Communications
-
language:
-
Short-container-title:AMC
Author:
Cheng Xiangdong1, Cao Xiwang12, Qian Liqin1
Affiliation:
1. School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China 2. Key Laboratory of Mathematical Modelling (NUAA) and High Performance Computing of Air Vehicles, MIIT, Nanjing, Jiangsu 211106, China
Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ q $\end{document}</tex-math></inline-formula> be an odd prime power and <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{F}_q $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M3">\begin{document}$ q $\end{document}</tex-math></inline-formula> elements. In this paper, suppose ring <inline-formula><tex-math id="M4">\begin{document}$ R = \mathbb{F}_{q}+ \mu \mathbb{F}_{q}+ \nu \mathbb{F}_{q}+ \mu \nu \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M5">\begin{document}$ \mu \nu = \nu \mu, \mu^{2} = \mu, \nu^{2} = \nu. $\end{document}</tex-math></inline-formula> We first give a Gray map from <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula> onto <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{F}_q^{4} $\end{document}</tex-math></inline-formula> and consider a decomposition of the ring <inline-formula><tex-math id="M8">\begin{document}$ R $\end{document}</tex-math></inline-formula>. Additionally, we investigate linear complementary dual (LCD) codes over the ring <inline-formula><tex-math id="M9">\begin{document}$ R $\end{document}</tex-math></inline-formula>. Some conditions for such linear codes over <inline-formula><tex-math id="M10">\begin{document}$ R $\end{document}</tex-math></inline-formula> to be linear complementary dual are given. Furthermore, based on the Artin conjecture, we get a class of good codes by calculating the total number of LCD double circulant codes over <inline-formula><tex-math id="M11">\begin{document}$ R $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference20 articles.
1. C. Carlet, S. Guilley.Complementary dual codes for counter-measures to side-channel attack, Appl. Math. Comput., 10 (2016), 131-150. 2. Y. Cengellenmis, A. Dertli, S. T. Dougherty.Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr., 72 (2014), 559-580. 3. A. Dertli, Y. Cengellenmis, S. Eren.Quantum codes over $ \mathbb{F}_2 + u \mathbb{F}_2 + v \mathbb{F}_2$. Palest, J. Math., 4 (2015), 547-552. 4. S. T. Dougherty, J. L. Kim, B. Ozkaya, L. Sok, P. Sol$\acute{e}$.The combination of LCD codes: Linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4 (2017), 116-128. 5. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sol$\acute{e}$.The $ \mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inf. Theory, 40 (1994), 301-319.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|