Computing square roots faster than the Tonelli-Shanks/Bernstein algorithm

Author:

Sarkar Palash

Abstract

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula> be a prime such that <inline-formula><tex-math id="M2">\begin{document}$ p = 1+2^nm $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ n\geq 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ m $\end{document}</tex-math></inline-formula> is odd. Given a square <inline-formula><tex-math id="M5">\begin{document}$ u $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{Z}_p $\end{document}</tex-math></inline-formula> and a non-square <inline-formula><tex-math id="M7">\begin{document}$ z $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M8">\begin{document}$ \mathbb{Z}_p $\end{document}</tex-math></inline-formula>, we describe an algorithm to compute a square root of <inline-formula><tex-math id="M9">\begin{document}$ u $\end{document}</tex-math></inline-formula> which requires <inline-formula><tex-math id="M10">\begin{document}$ \mathfrak{T}+O(n^{3/2}) $\end{document}</tex-math></inline-formula> operations (i.e., squarings and multiplications), where <inline-formula><tex-math id="M11">\begin{document}$ \mathfrak{T} $\end{document}</tex-math></inline-formula> is the number of operations required to exponentiate an element of <inline-formula><tex-math id="M12">\begin{document}$ \mathbb{Z}_p $\end{document}</tex-math></inline-formula> to the power <inline-formula><tex-math id="M13">\begin{document}$ (m-1)/2 $\end{document}</tex-math></inline-formula>. This improves upon the Tonelli-Shanks (TS) algorithm which requires <inline-formula><tex-math id="M14">\begin{document}$ \mathfrak{T}+O(n^{2}) $\end{document}</tex-math></inline-formula> operations. Bernstein had proposed a table look-up based variant of the TS algorithm which requires <inline-formula><tex-math id="M15">\begin{document}$ \mathfrak{T}+O((n/w)^{2}) $\end{document}</tex-math></inline-formula> operations and <inline-formula><tex-math id="M16">\begin{document}$ O(2^wn/w) $\end{document}</tex-math></inline-formula> storage, where <inline-formula><tex-math id="M17">\begin{document}$ w $\end{document}</tex-math></inline-formula> is a parameter. A table look-up variant of the new algorithm requires <inline-formula><tex-math id="M18">\begin{document}$ \mathfrak{T}+O((n/w)^{3/2}) $\end{document}</tex-math></inline-formula> operations and the same storage. In concrete terms, the new algorithm is shown to require significantly fewer operations for particular values of <inline-formula><tex-math id="M19">\begin{document}$ n $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Reference15 articles.

1. L. M. Adleman, K. L. Manders and G. L. Miller, On taking roots in finite fields, in 18th Annual Symposium on Foundations of Computer Science (Providence, R.I., 1977), IEEE Computer Society, (1977), 175–178.

2. A. O. L. Atkin, Probabilistic primality testing, in INRIA Res. Rep., (1992), 159–163.

3. E. Bach, J. Shallit., Algorithmic Number Theory Volume 1, Efficient Algorithms, ${ref.volume} (1996).

4. D. J. Bernstein, Faster square roots in annoying finite fields, https://cr.yp.to/papers.html#sqroot, 2001.

5. D. J. Bernstein., Pippenger's exponentiation algorithm., https://cr.yp.to/papers.html#pippenger, 2002.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3