Abstract
<p style='text-indent:20px;'>This paper investigates the existence of <i>strong</i> global and exponential attractors and their robustness on the perturbed parameter for an extensible beam equation with nonlocal energy damping in <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset{\mathbb R}^N $\end{document}</tex-math></inline-formula>: <inline-formula><tex-math id="M2">\begin{document}$ u_{tt}+\Delta^2 u-\kappa\phi(\|\nabla u\|^2)\Delta u-M(\|\Delta u\|^2+\|u_t\|^2)\Delta u_t+f(u) = h $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \kappa \in \Lambda $\end{document}</tex-math></inline-formula> (index set) is an extensibility parameter, and where the "<i>strong</i>" means that the compactness, the attractiveness and the finiteness of the fractal dimension of the attractors are all in the topology of the stronger space <inline-formula><tex-math id="M4">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula> where the attractors lie in. Under the assumptions that either the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is of optimal subcritical growth or even <inline-formula><tex-math id="M6">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is a true source term, we show that (ⅰ) the semi-flow originating from any point in the natural energy space <inline-formula><tex-math id="M7">\begin{document}$ {\mathcal H} $\end{document}</tex-math></inline-formula> lies in the stronger strong solution space <inline-formula><tex-math id="M8">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M9">\begin{document}$ t>0 $\end{document}</tex-math></inline-formula>; (ⅱ) the related solution semigroup <inline-formula><tex-math id="M10">\begin{document}$ S^\kappa(t) $\end{document}</tex-math></inline-formula> has a strong <inline-formula><tex-math id="M11">\begin{document}$ ({\mathcal H},{\mathcal H}_2) $\end{document}</tex-math></inline-formula>-global attractor <inline-formula><tex-math id="M12">\begin{document}$ {\mathscr A}^\kappa $\end{document}</tex-math></inline-formula> for each <inline-formula><tex-math id="M13">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> and the family of <inline-formula><tex-math id="M14">\begin{document}$ {\mathscr A}^\kappa, \kappa\in \Lambda $\end{document}</tex-math></inline-formula> is upper semicontinuous on <inline-formula><tex-math id="M15">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> in the topology of stronger space <inline-formula><tex-math id="M16">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula>; (ⅲ) <inline-formula><tex-math id="M17">\begin{document}$ S^\kappa(t) $\end{document}</tex-math></inline-formula> has a strong <inline-formula><tex-math id="M18">\begin{document}$ ({\mathcal H},{\mathcal H}_2) $\end{document}</tex-math></inline-formula>-exponential attractor <inline-formula><tex-math id="M19">\begin{document}$ \mathfrak {A}^\kappa_{exp} $\end{document}</tex-math></inline-formula> for each <inline-formula><tex-math id="M20">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> and it is Hölder continuous on <inline-formula><tex-math id="M21">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> in the topology of <inline-formula><tex-math id="M22">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula>. These results break through long-standing existed restriction for the attractors of the extensible beam models in energy space and show the optimal topology properties of them in the stronger phase space.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference33 articles.
1. A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992.
2. A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.
3. J. M. Ball.Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.
4. H. M. Berger.A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.
5. M. M. Cavalcanti, V. N. D. Cavalcanti, J. A. Soriano.Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献