Strong attractors and their robustness for an extensible beam model with energy damping

Author:

Sun Yue,Yang Zhijian

Abstract

<p style='text-indent:20px;'>This paper investigates the existence of <i>strong</i> global and exponential attractors and their robustness on the perturbed parameter for an extensible beam equation with nonlocal energy damping in <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset{\mathbb R}^N $\end{document}</tex-math></inline-formula>: <inline-formula><tex-math id="M2">\begin{document}$ u_{tt}+\Delta^2 u-\kappa\phi(\|\nabla u\|^2)\Delta u-M(\|\Delta u\|^2+\|u_t\|^2)\Delta u_t+f(u) = h $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \kappa \in \Lambda $\end{document}</tex-math></inline-formula> (index set) is an extensibility parameter, and where the "<i>strong</i>" means that the compactness, the attractiveness and the finiteness of the fractal dimension of the attractors are all in the topology of the stronger space <inline-formula><tex-math id="M4">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula> where the attractors lie in. Under the assumptions that either the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is of optimal subcritical growth or even <inline-formula><tex-math id="M6">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is a true source term, we show that (ⅰ) the semi-flow originating from any point in the natural energy space <inline-formula><tex-math id="M7">\begin{document}$ {\mathcal H} $\end{document}</tex-math></inline-formula> lies in the stronger strong solution space <inline-formula><tex-math id="M8">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M9">\begin{document}$ t&gt;0 $\end{document}</tex-math></inline-formula>; (ⅱ) the related solution semigroup <inline-formula><tex-math id="M10">\begin{document}$ S^\kappa(t) $\end{document}</tex-math></inline-formula> has a strong <inline-formula><tex-math id="M11">\begin{document}$ ({\mathcal H},{\mathcal H}_2) $\end{document}</tex-math></inline-formula>-global attractor <inline-formula><tex-math id="M12">\begin{document}$ {\mathscr A}^\kappa $\end{document}</tex-math></inline-formula> for each <inline-formula><tex-math id="M13">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> and the family of <inline-formula><tex-math id="M14">\begin{document}$ {\mathscr A}^\kappa, \kappa\in \Lambda $\end{document}</tex-math></inline-formula> is upper semicontinuous on <inline-formula><tex-math id="M15">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> in the topology of stronger space <inline-formula><tex-math id="M16">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula>; (ⅲ) <inline-formula><tex-math id="M17">\begin{document}$ S^\kappa(t) $\end{document}</tex-math></inline-formula> has a strong <inline-formula><tex-math id="M18">\begin{document}$ ({\mathcal H},{\mathcal H}_2) $\end{document}</tex-math></inline-formula>-exponential attractor <inline-formula><tex-math id="M19">\begin{document}$ \mathfrak {A}^\kappa_{exp} $\end{document}</tex-math></inline-formula> for each <inline-formula><tex-math id="M20">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> and it is Hölder continuous on <inline-formula><tex-math id="M21">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> in the topology of <inline-formula><tex-math id="M22">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula>. These results break through long-standing existed restriction for the attractors of the extensible beam models in energy space and show the optimal topology properties of them in the stronger phase space.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Reference33 articles.

1. A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992.

2. A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.

3. J. M. Ball.Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.

4. H. M. Berger.A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.

5. M. M. Cavalcanti, V. N. D. Cavalcanti, J. A. Soriano.Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite-dimensionality of attractors for wave equations with degenerate nonlocal damping;Discrete and Continuous Dynamical Systems;2025

2. Dual cross perception network with texture and boundary guidance for camouflaged object detection;Computer Vision and Image Understanding;2024-11

3. Asymptotic smoothness effects and global attractor for a peridynamic model with energy damping;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-07-31

4. Well‐posedness for a class of wave equations with nonlocal weak damping;Mathematical Methods in the Applied Sciences;2024-06-27

5. Attractors and asymptotic behavior for an energy-damped extensible beam model;Zeitschrift für angewandte Mathematik und Physik;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3