Stability and dynamic transition of vegetation model for flat arid terrains

Author:

Jia Lan,Li Liang

Abstract

<p style='text-indent:20px;'>In this paper, we aim to investigate the dynamic transition of the Klausmeier-Gray-Scott (KGS) model in a rectangular domain or a square domain. Our research tool is the dynamic transition theory for the dissipative system. Firstly, we verify the principle of exchange of stability (PES) by analyzing the spectrum of the linear part of the model. Secondly, by utilizing the method of center manifold reduction, we show that the model undergoes a continuous transition or a jump transition. For the model in a rectangular domain, we discuss the transitions of the model from a real simple eigenvalue and a pair of simple complex eigenvalues. our results imply that the model bifurcates to exactly two new steady state solutions or a periodic solution, whose stability is determined by a non-dimensional coefficient. For the model in a square domain, we only focus on the transition from a real eigenvalue with algebraic multiplicity 2. The result shows that the model may bifurcate to an <inline-formula><tex-math id="M1">\begin{document}$ S^{1} $\end{document}</tex-math></inline-formula> attractor with 8 non-degenerate singular points. In addition, a saddle-node bifurcation is also possible. At the end of the article, some numerical results are performed to illustrate our conclusions.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactions of (m,n) and (m+1,n) modes with real eigenvalues: A dynamic transition approach;Communications in Nonlinear Science and Numerical Simulation;2023-12

2. Dynamical transition and bifurcation of a diffusive predator–prey model with an Allee effect on prey;Communications in Nonlinear Science and Numerical Simulation;2023-11

3. Dynamic transitions and bifurcations of 1D reaction-diffusion equations: The non-self-adjoint case;Journal of Mathematical Analysis and Applications;2023-07

4. Dynamical transition and bifurcation of hydromagnetic convection in a rotating fluid layer;Communications in Nonlinear Science and Numerical Simulation;2022-09

5. Dynamic transitions and Turing patterns of the Brusselator model;Mathematical Methods in the Applied Sciences;2022-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3