Abstract
<p style='text-indent:20px;'>In this paper, we investigate a reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. The primary aim is to study the impact of small advection terms and heterogeneous environment, which is on two species' dynamics via a free boundary. The function <inline-formula><tex-math id="M1">\begin{document}$ m(x) $\end{document}</tex-math></inline-formula> represents heterogeneous environment, and it can satisfy positive everywhere condition or changeable sign condition. Firstly, on one hand, we provide long time behaviors of the solution in vanishing case when <inline-formula><tex-math id="M2">\begin{document}$ m(x) $\end{document}</tex-math></inline-formula> satisfies both conditions above; on the other hand, long time behaviors of the solution in spreading case are got when <inline-formula><tex-math id="M3">\begin{document}$ m(x) $\end{document}</tex-math></inline-formula> satisfies positive everywhere condition. Secondly, a spreading-vanishing dichotomy and several sufficient conditions through the initial data and the moving parameters are obtained to determine whether spreading or vanishing of two species happens when <inline-formula><tex-math id="M4">\begin{document}$ m(x) $\end{document}</tex-math></inline-formula> satisfies both conditions above. Furthermore, we derive estimates of spreading speed of the free boundary when <inline-formula><tex-math id="M5">\begin{document}$ m(x) $\end{document}</tex-math></inline-formula> satisfies positive everywhere condition and two species spreading occurs.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference49 articles.
1. I. E. Averill, The Effect of Intermediate Advection on Two Competing Species, Ph.D thesis, The Ohio State University, 2011.
2. G. Bunting, Y. Du, K. Krakowski.Spreading speed revisited: analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
3. R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
4. X. Chen, K.-Y. Lam, Y. Lou.Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.
5. Q. Chen, F. Li, F. Wang.A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献