Synchronization of dynamical systems on Riemannian manifolds by an extended PID-type control theory: Numerical evaluation

Author:

Fiori Simone1,Cervigni Italo2,Ippoliti Mattia2,Menotta Claudio2

Affiliation:

1. Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy

2. Graduate School of Information and Automation Engineering, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy

Abstract

<p style='text-indent:20px;'>The present document outlines a non-linear control theory, based on the PID regulation scheme, to synchronize two second-order dynamical systems insisting on a Riemannian manifold. The devised extended PID scheme, referred to as M-PID, includes an unconventional component, termed 'canceling component', whose purpose is to cancel the natural dynamics of a system and to replace it with a desired dynamics. In addition, this document presents numerical recipes to implement such systems, as well as the devised control scheme, on a computing platform and a large number of numerical simulation results focused on the synchronization of Duffing-like non-linear oscillators on the unit sphere. Detailed numerical evaluations show that the canceling contribution of the M-PID control scheme is not critical to the synchronization of two oscillators, however, it possesses the beneficial effect of speeding up their synchronization. Simulation results obtained in non-ideal conditions, namely in the presence of additive disturbances and delays, reveal that the devised synchronization scheme is robust against high-frequency additive disturbances as well as against observation delays.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3