Abstract
<p style='text-indent:20px;'>We study the dynamics of a two-layer baroclinic quasi-geostrophic model. We prove that the semigroup <inline-formula><tex-math id="M1">\begin{document}$ \{S(t)\}_{t\geq 0} $\end{document}</tex-math></inline-formula> associated with the solutions of the model has a global attractor in both <inline-formula><tex-math id="M2">\begin{document}$ {{\dot H}_{p}}^1(\Omega) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ {{\dot H}_{p}}^2(\Omega) $\end{document}</tex-math></inline-formula>. Also we show that for any viscosity <inline-formula><tex-math id="M4">\begin{document}$ \mu>0 $\end{document}</tex-math></inline-formula>, there is an open and dense set of forcing <inline-formula><tex-math id="M5">\begin{document}$ \mathcal G\subset{{\dot H}_{p}}^0(\Omega) $\end{document}</tex-math></inline-formula> such that for each <inline-formula><tex-math id="M6">\begin{document}$ G = (g_1, g_2)\in \mathcal G $\end{document}</tex-math></inline-formula>, the set <inline-formula><tex-math id="M7">\begin{document}$ S(G, \mu) \subset {{\dot H}_{p}}^4(\Omega) $\end{document}</tex-math></inline-formula> of the steady state problem is non–empty and finite.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference8 articles.
1. M. Cai.A analytic study of the baroclinic adjustment in a quasigeostrophic two-layer channel model, Journal of the Atmospheric Sciences, 49 (1992), 1594-1605.
2. M. Hernandez, K. W. Ong and S. Wang, Baroclinic instability and transitions in a quasi-geostrophic two-layer channel model, arXiv preprint.
3. Q. Ma, S. Wang, C. Zhong.Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002), 1541-1559.
4. T. Ma and S. Wang, Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, Volume 119 of Mathematical Surveys and Monographs, Providence, RI: American Mathematical Society, 2005.
5. M. Mak.Equilibration in nonlinear Baroclinic instability, J. Atomspheric Sciences, 42 (1985), 2764-2782.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献