Affiliation:
1. School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China
Abstract
<p style='text-indent:20px;'>This paper is devoted to the study of a reaction-diffusion-advection epidemic model in time almost periodic and space periodic media. First, we obtain a threshold result on the global stability of either zero or the positive time almost periodic solution in terms of the basic reproduction ratio <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{R}_0 $\end{document}</tex-math></inline-formula>. Second, we prove the existence of spreading speeds in the partially spatially homogeneous case and the general case. At last, we use numerical simulations to investigate the influence of model parameters on spreading speeds.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference53 articles.
1. L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai.Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.
2. S. Altizer, A. Hosseini, P. Hudson, M. Rohani, P. Rohani.Seasonality and the dynamics of infectious disease, Ecol. Lett., 9 (2006), 467-484.
3. Y. Atsushi.Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups. Ⅱ., Funkcial. Ekvac., 33 (1990), 139-150.
4. N. Bacaër, S. Guernaoui.The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
5. X. Bao, Spreading speeds for two species competition systems in time almost periodic and space periodic media, Acta Appl. Math., 171 (2021), Paper No. 11, 28 pp.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献