Affiliation:
1. Faculty of Mathematics, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
Abstract
<p style='text-indent:20px;'>In this paper, we study the Cauchy problem for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ iu_{t} +\Delta u-c|x|^{-2}u+|x|^{-b} |u|^{\sigma } u=0,\; u(0)=u_{0} \in H_{c}^{1},\;(t, x)\in \mathbb R\times\mathbb R^{d}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ d\ge3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ 0<b<2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \frac{4-2b}{d}<\sigma<\frac{4-2b}{d-2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ c>-c(d):=-\left(\frac{d-2}{2}\right)^{2} $\end{document}</tex-math></inline-formula>. We first establish the criteria for global existence and blow-up of general (not necessarily radial or finite variance) solutions to the equation. Using these criteria, we study the global existence and blow-up of solutions to the equation with general data lying below, at, and above the ground state threshold. Our results extend the global existence and blow-up results of Campos-Guzmán (Z. Angew. Math. Phys., 2021) and Dinh-Keraani (SIAM J. Math. Anal., 2021).</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献