Author:
Yang Lin,Wang Yejuan,Caraballo Tomás
Abstract
<p style='text-indent:20px;'>In this paper we investigate the regularity of global attractors and of exponential attractors for two dimensional quasi-geostrophic equations with fractional dissipation in <inline-formula><tex-math id="M2">\begin{document}$ H^{2\alpha+s}(\mathbb{T}^2) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M3">\begin{document}$ \alpha>\frac{1}{2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ s>1. $\end{document}</tex-math></inline-formula> We prove the existence of <inline-formula><tex-math id="M5">\begin{document}$ (H^{2\alpha^-+s}(\mathbb{T}^2),H^{2\alpha+s}(\mathbb{T}^2)) $\end{document}</tex-math></inline-formula>-global attractor <inline-formula><tex-math id="M6">\begin{document}$ \mathcal{A}, $\end{document}</tex-math></inline-formula> that is, <inline-formula><tex-math id="M7">\begin{document}$ \mathcal{A} $\end{document}</tex-math></inline-formula> is compact in <inline-formula><tex-math id="M8">\begin{document}$ H^{2\alpha+s}(\mathbb{T}^2) $\end{document}</tex-math></inline-formula> and attracts all bounded subsets of <inline-formula><tex-math id="M9">\begin{document}$ H^{2\alpha^-+s}(\mathbb{T}^2) $\end{document}</tex-math></inline-formula> with respect to the norm of <inline-formula><tex-math id="M10">\begin{document}$ H^{2\alpha+s}(\mathbb{T}^2). $\end{document}</tex-math></inline-formula> The asymptotic compactness of solutions in <inline-formula><tex-math id="M11">\begin{document}$ H^{2\alpha+s}(\mathbb{T}^2) $\end{document}</tex-math></inline-formula> is established by using commutator estimates for nonlinear terms, the spectral decomposition of solutions and new estimates of higher order derivatives. Furthermore, we show the existence of the exponential attractor in <inline-formula><tex-math id="M12">\begin{document}$ H^{2\alpha+s}(\mathbb{T}^2), $\end{document}</tex-math></inline-formula> whose compactness, boundedness of the fractional dimension and exponential attractiveness for the bounded subset of <inline-formula><tex-math id="M13">\begin{document}$ H^{2\alpha^-+s}(\mathbb{T}^2) $\end{document}</tex-math></inline-formula> are all in the topology of <inline-formula><tex-math id="M14">\begin{document}$ H^{2\alpha+s}(\mathbb{T}^2). $\end{document}</tex-math></inline-formula></p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference40 articles.
1. R. A. Adams., Sobolev Spaces,, ${ref.volume} (1975).
2. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992.
3. L. C. Berselli, Vanishing viscosity limit and long-time behavior for $2$D quasi-geostrophic equations, Indiana Univ. Math. J., 51 (2002), 905–930.
4. V. Berti and S. Gatti, Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations, Quart. Appl. Math., 64 (2006), 617–639.
5. J. W. Cholewa and T. Dlotko, Bi-spaces global attractors in abstract parabolic equations, Evolution equations, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 60 (2003), 13–26.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献