Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference33 articles.
1. N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler.Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
2. P. Biler, Radially symmetric solutions of a chemotaxis model in the plane–the supercritical case, in Parabolic and Navier–Stokes Equations. Part 1, vol. 81 of Banach center publ., Polish Acad. Sci. Inst. Math., Warsaw, 2008, 31–42.
3. T. Black, M. Fuest and J. Lankeit, Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic–elliptic Keller–Segel systems, Preprint, arXiv: 2005.12089.
4. M. A. J. Chaplain, G. Lolas.Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734.
5. M. Fuest, Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source, Nonlinear Anal. Real World Appl., 52 (2020), 103022, 14pp.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献