Large time behavior in a predator-prey system with pursuit-evasion interaction

Author:

Qi Dayong,Ke Yuanyuan

Abstract

<p style='text-indent:20px;'>This work considers a pursuit-evasion model</p><p style='text-indent:20px;'><disp-formula><label/><tex-math id="FE1000">\begin{document}$\begin{equation} \left\{ \begin{split} &amp;u_t = \Delta u-\chi\nabla\cdot(u\nabla w)+u(\mu-u+av),\\ &amp;v_t = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda-v-bu),\\ &amp;w_t = \Delta w-w+v,\\ &amp;z_t = \Delta z-z+u\\ \end{split} \right. \ \ \ \ \ (1) \end{equation}$\end{document}</tex-math></disp-formula></p><p style='text-indent:20px;'>with positive parameters <inline-formula><tex-math id="M1">\begin{document}$ \chi $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ a $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> in a bounded domain <inline-formula><tex-math id="M7">\begin{document}$ \Omega\subset\mathbb{R}^N $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M8">\begin{document}$ N $\end{document}</tex-math></inline-formula> is the dimension of the space) with smooth boundary. We prove that if <inline-formula><tex-math id="M9">\begin{document}$ a&lt;2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ \frac{N(2-a)}{2(C_{\frac{N}{2}+1})^{\frac{1}{\frac{N}{2}+1}}(N-2)_+}&gt;\max\{\chi,\xi\} $\end{document}</tex-math></inline-formula>, (1) possesses a global bounded classical solution with a positive constant <inline-formula><tex-math id="M11">\begin{document}$ C_{\frac{N}{2}+1} $\end{document}</tex-math></inline-formula> corresponding to the maximal Sobolev regularity. Moreover, it is shown that if <inline-formula><tex-math id="M12">\begin{document}$ b\mu&lt;\lambda $\end{document}</tex-math></inline-formula>, the solution (<inline-formula><tex-math id="M13">\begin{document}$ u,v,w,z $\end{document}</tex-math></inline-formula>) converges to a spatially homogeneous coexistence state with respect to the norm in <inline-formula><tex-math id="M14">\begin{document}$ L^\infty(\Omega) $\end{document}</tex-math></inline-formula> in the large time limit under some exact smallness conditions on <inline-formula><tex-math id="M15">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>. If <inline-formula><tex-math id="M17">\begin{document}$ b\mu&gt;\lambda $\end{document}</tex-math></inline-formula>, the solution converges to (<inline-formula><tex-math id="M18">\begin{document}$ \mu,0,0,\mu $\end{document}</tex-math></inline-formula>) with respect to the norm in <inline-formula><tex-math id="M19">\begin{document}$ L^\infty(\Omega) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M20">\begin{document}$ t\rightarrow \infty $\end{document}</tex-math></inline-formula> under some smallness assumption on <inline-formula><tex-math id="M21">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> with arbitrary <inline-formula><tex-math id="M22">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3