Author:
Chen Xianyong,Jiang Weihua
Abstract
<p style='text-indent:20px;'>We consider a two-species Lotka-Volterra competition system with both local and nonlocal intraspecific and interspecific competitions under the homogeneous Neumann condition. Firstly, we obtain conditions for the existence of Hopf, Turing, Turing-Hopf bifurcations and the necessary and sufficient condition that Turing instability occurs in the weak competition case, and find that the strength of nonlocal intraspecific competitions is the key factor for the stability of coexistence equilibrium. Secondly, we derive explicit formulas of normal forms up to order 3 by applying center manifold theory and normal form method, in which we show the difference compared with system without nonlocal terms in calculating coefficients of normal forms. Thirdly, the existence of complex spatiotemporal phenomena, such as the spatial homogeneous periodic orbit, a pair of stable spatial inhomogeneous steady states and a pair of stable spatial inhomogeneous periodic orbits, is rigorously proved by analyzing the amplitude equations. It is shown that suitably strong nonlocal intraspecific competitions and nonlocal delays can result in various coexistence states for the competition system in the weak competition case. Lastly, these complex spatiotemporal patterns are presented in the numerical results.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献