Affiliation:
1. Faculty of mathematics and physics, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
Abstract
<p style='text-indent:20px;'>This paper focuses on the persistence of lower-dimensional tori in reversible systems with high dimensional degenerate equilibrium under small perturbations. By an improved KAM iteration and Topological degree theory, we prove that the invariant torus with given frequency persists under small perturbations. Our result is a generalization of X. Wang et al [On the persistence of degenerate lower-dimensional tori in reversible systems, Ergodic Theory Dynam. Systems, 35(2015), 2311-2333].</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference31 articles.
1. V. I. Arnol'd, Reversible systems, in: Nonlinear and Turbulent Processes in Physics, Vol. 3 (Kiev, 1983), Harwood Academic Publ., Chur, (1984), 1161–1174.
2. H. W. Broer, M. C. Ciocci, H. Hanßmann.The quasi-periodic reversible Hopf bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 2605-2623.
3. H. W. Broer, M. C. Ciocci, H. Hanßmann, A. Vanderbauwhede.Quasi-periodic stability of normally resonant tori, Physica D, 238 (2009), 309-318.
4. H. W. Broer, J. Hoo, V. Naudot.Normal linear stability of quasi-periodic tori, J. Differ. Equations, 232 (2007), 355-418.
5. H. W. Broer, G. B. Huitema.Unfoldings of quasi-periodic tori in reversible systems, J. Dynam. Differ. Equations, 7 (1995), 191-212.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献