Author:
Chen Biyue,Zhao Chunxiang,Zhong Chengkui
Abstract
<p style='text-indent:20px;'>The paper is devoted to establishing the long-time behavior of solutions for the wave equation with nonlocal strong damping: <inline-formula><tex-math id="M1">\begin{document}$ u_{tt}-\Delta u-\|\nabla u_{t}\|^{p}\Delta u_{t}+f(u) = h(x). $\end{document}</tex-math></inline-formula> It proves the well-posedness by means of the monotone operator theory and the existence of a global attractor when the growth exponent of the nonlinearity <inline-formula><tex-math id="M2">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is up to the subcritical and critical cases in natural energy space.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献