Structure of non-autonomous attractors for a class of diffusively coupled ODE

Author:

Carvalho Alexandre N.1,Rocha Luciano R. N.1,Langa José A.2,Obaya Rafael3

Affiliation:

1. Instituto de Ciências Matemáticas e de Computaçao, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 - São Carlos SP, Brazil

2. Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 - Sevilla, Spain

3. Departamento de Matemática Aplicada, E. Ingenierías Industriales, Universidad de Valladolid, 47011 Valladolid, and member of IMUVA, Instituto de Matemáticas, Universidad de Valladolid, Spain

Abstract

<p style='text-indent:20px;'>In this work we will study the structure of the skew-product attractor for a planar diffusively coupled ordinary differential equation, given by <inline-formula><tex-math id="M1">\begin{document}$ \dot{x} = k(y-x)+x-\beta(t)x^3 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \dot{y} = k(x-y)+y-\beta(t)y^3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ t\geq 0 $\end{document}</tex-math></inline-formula>. We identify the non-autonomous structures that completely describes the dynamics of this model giving a Morse decomposition for the skew-product attractor. The complexity of the isolated invariant sets in the global attractor of the associated skew-product semigroup is associated to the complexity of the attractor of the associated driving semigroup. In particular, if <inline-formula><tex-math id="M4">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> is asymptotically almost periodic, the isolated invariant sets will be almost periodic hyperbolic global solutions of an associated globally defined problem.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3