Orbital dynamics on invariant sets of contact Hamiltonian systems

Author:

Liu Qihuai,Torres Pedro J.

Abstract

<p style='text-indent:20px;'>In this paper, we shall give new insights on dynamics of contact Hamiltonian flows, which are gaining importance in several branches of physics as they model a dissipative behaviour. We divide the contact phase space into three parts, which are corresponding to three differential invariant sets <inline-formula><tex-math id="M1">\begin{document}$ \Omega_\pm, \Omega_0 $\end{document}</tex-math></inline-formula>. On the invariant sets <inline-formula><tex-math id="M2">\begin{document}$ \Omega_\pm $\end{document}</tex-math></inline-formula>, under some geometric conditions, the contact Hamiltonian system is equivalent to a Hamiltonian system via the Hölder transformation. The invariant set <inline-formula><tex-math id="M3">\begin{document}$ \Omega_0 $\end{document}</tex-math></inline-formula> may be composed of several equilibrium points and heteroclinic orbits connecting them, on which contact Hamiltonian system is conservative. Moreover, we have shown that, under general conditions, the zero energy level domain is a domain of attraction. In some cases, such a domain of attraction does not have nontrivial periodic orbits. Some interesting examples are presented.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fixed-time stabilization and H control of time-delay port-controlled Hamiltonian systems;European Journal of Control;2024-05

2. New results on finite‐time stability and H∞$$ {H}_{\infty } $$ control for nonlinear Hamiltonian systems;Asian Journal of Control;2023-10-23

3. Scaling symmetries, contact reduction and Poincaré’s dream;Journal of Physics A: Mathematical and Theoretical;2023-10-09

4. Contact Extension and Symplectification;Acta Mathematicae Applicatae Sinica, English Series;2023-10

5. The flow method for the Baker-Campbell-Hausdorff formula: exact results;Journal of Physics A: Mathematical and Theoretical;2023-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3