Abstract
<p style='text-indent:20px;'>Effect of additive fading noise on a behavior of the solution of a stochastic difference equation with continuous time is investigated. It is shown that if the zero solution of the initial stochastic difference equation is asymptotically mean square quasistable and the level of additive stochastic perturbations is given by square summable sequence, then the solution of a perturbed difference equation remains to be an asymptotically mean square quasitrivial. The obtained results are formulated in terms of Lyapunov functionals and linear matrix inequalities (LMIs). It is noted that the study of the situation, when an additive stochastic noise fades on the infinity not so quickly, remains an open problem.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献