Affiliation:
1. University of Shanghai for Science and Technology, Shanghai, 200093, China
Abstract
<p style='text-indent:20px;'>In this paper, we propose a multi-domain Chebyshev collocation method for the nonlinear fractional pantograph differential equations. We analyze the existence and uniqueness, and present the <inline-formula><tex-math id="M1">\begin{document}$ hp $\end{document}</tex-math></inline-formula>-version error bounds under the <inline-formula><tex-math id="M2">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-norm and the <inline-formula><tex-math id="M3">\begin{document}$ L^\infty $\end{document}</tex-math></inline-formula>-norm. Numerical experiments are included to illustrate the theoretical results.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference27 articles.
1. K. Balachandran, S. Kiruthika, J. J. Trujillo.Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712-720.
2. A. H. Bhrawy, A. A. Al-Zahrani, Y. A. Alhamed, D. Baleanu.A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional pantograph equations, Rom. J. Phys., 59 (2014), 646-657.
3. H. Brunner., Collocation Methods for Volterra Integral and Related Functional Equations, ${ref.volume} (2004).
4. S. Chen, J. Shen, L. Wang.Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput., 85 (2016), 1603-1638.
5. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lect. Notes Math., Springer, Berlin, 2004.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献