Nonlinear effects of instantaneous and delayed state dependence in a delayed feedback loop

Author:

Humphries Antony R.1,Krauskopf Bernd2,Ruschel Stefan2,Sieber Jan3

Affiliation:

1. Departments of Mathematics & Statistics, and, Physiology, McGill University, Montreal, Quebec H3A 0B9, Canada

2. Department of Mathematics and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

3. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, Exeter EX4 4QF, United Kingdom

Abstract

<p style='text-indent:20px;'>We study a scalar, first-order delay differential equation (DDE) with instantaneous and state-dependent delayed feedback, which itself may be delayed. The state dependence introduces nonlinearity into an otherwise linear system. We investigate the ensuing nonlinear dynamics with the case of instantaneous state dependence as our starting point. We present the bifurcation diagram in the parameter plane of the two feedback strengths showing how periodic orbits bifurcate from a curve of Hopf bifurcations and disappear along a curve where both period and amplitude grow beyond bound as the orbits become saw-tooth shaped. We then 'switch on' the delay within the state-dependent feedback term, reflected by a parameter <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula>. Our main conclusion is that the new parameter <inline-formula><tex-math id="M2">\begin{document}$ b $\end{document}</tex-math></inline-formula> has an immediate effect: as soon as <inline-formula><tex-math id="M3">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> the bifurcation diagram for <inline-formula><tex-math id="M4">\begin{document}$ b = 0 $\end{document}</tex-math></inline-formula> changes qualitatively and, specifically, the nature of the limiting saw-tooth shaped periodic orbits changes. Moreover, we show — numerically and through center manifold analysis — that a degeneracy at <inline-formula><tex-math id="M5">\begin{document}$ b = 1/3 $\end{document}</tex-math></inline-formula> of an equilibrium with a double real eigenvalue zero leads to a further qualitative change and acts as an organizing center for the bifurcation diagram. Our results demonstrate that state dependence in delayed feedback terms may give rise to new dynamics and, moreover, that the observed dynamics may change significantly when the state-dependent feedback depends on past states of the system. This is expected to have implications for models arising in different application contexts, such as models of human balancing and conceptual climate models of delayed action oscillator type.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3