Abstract
<p style='text-indent:20px;'>We investigate the well-posedness and longtime dynamics of fractional damping wave equation whose coefficient <inline-formula><tex-math id="M1">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula> depends explicitly on time. First of all, when <inline-formula><tex-math id="M2">\begin{document}$ 1\leq p\leq p^{\ast\ast} = \frac{N+2}{N-2}\; (N\geq3) $\end{document}</tex-math></inline-formula>, we obtain existence of solution for the fractional damping wave equation with time-dependent decay coefficient in <inline-formula><tex-math id="M3">\begin{document}$ H_{0}^{1}(\Omega)\times L^{2}(\Omega) $\end{document}</tex-math></inline-formula>. Furthermore, when <inline-formula><tex-math id="M4">\begin{document}$ 1\leq p<p^{*} = \frac{N+4\alpha}{N-2} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ u_{t} $\end{document}</tex-math></inline-formula> is proved to be of higher regularity in <inline-formula><tex-math id="M6">\begin{document}$ H^{1-\alpha}\; (t>\tau) $\end{document}</tex-math></inline-formula> and show that the solution is quasi-stable in weaker space <inline-formula><tex-math id="M7">\begin{document}$ H^{1-\alpha}\times H^{-\alpha} $\end{document}</tex-math></inline-formula>. Finally, we get the existence and regularity of time-dependent attractor.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference20 articles.
1. J. Arrieta, A. N. Carvalho, J. K. Hale.A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.
2. A. V. Babin, M. I. Visik.Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491.
3. S. M. Bruschi, A. N. Carvalho, J. W. Cholewa, T. Dlotko.Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations, J. Dynam. Differential Equations, 18 (2006), 767-814.
4. V. V. Chepyzhov, M. Conti, V. Pata.A minimal approach to the theory of global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088.
5. I. Chueshov and I. Lasiecka, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献