Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod-Haldane functional response

Author:

Jiang Zhichao,Zhang Zexian,Jie Maoyan

Abstract

<p style='text-indent:20px;'>We structure a phytoplankton zooplankton interaction system by incorporating (i) Monod-Haldane type functional response function; (ii) two delays accounting, respectively, for the gestation delay <inline-formula><tex-math id="M1">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> of the zooplankton and the time <inline-formula><tex-math id="M2">\begin{document}$ \tau_1 $\end{document}</tex-math></inline-formula> required for the maturity of TPP. Firstly, we give the existence of equilibrium and property of solutions. The global convergence to the boundary equilibrium is also derived under a certain criterion. Secondly, in the case without the maturity delay <inline-formula><tex-math id="M3">\begin{document}$ \tau_1 $\end{document}</tex-math></inline-formula>, the gestation delay <inline-formula><tex-math id="M4">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> may lead to stability switches of the positive equilibrium. Then fixed <inline-formula><tex-math id="M5">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> in stable interval, the effect of <inline-formula><tex-math id="M6">\begin{document}$ \tau_1 $\end{document}</tex-math></inline-formula> is investigated and find <inline-formula><tex-math id="M7">\begin{document}$ \tau_1 $\end{document}</tex-math></inline-formula> can also cause the oscillation of system. Specially, when <inline-formula><tex-math id="M8">\begin{document}$ \tau = \tau_1 $\end{document}</tex-math></inline-formula>, under certain conditions, the periodic solution will exist with the wide range as delay away from critical value. To deal with the local stability of the positive equilibrium under a general case with all delays being positive, we use the crossing curve methods, it can obtain the stable changes of positive equilibrium in <inline-formula><tex-math id="M9">\begin{document}$ (\tau, \tau_1) $\end{document}</tex-math></inline-formula> plane. When choosing <inline-formula><tex-math id="M10">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> in the unstable interval, the system still can occur Hopf bifurcation, which extends the crossing curve methods to the system exponentially decayed delay-dependent coefficients. Some numerical simulations are given to indicate the correction of the theoretical analyses.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3