Inheritance of $ {\mathscr F}- $chaos and $ {\mathscr F}- $sensitivities under an iteration for non-autonomous discrete systems

Author:

Kim JinHyon1,Ju HyonHui1,An WiJong1

Affiliation:

1. Faculty of Mathematics, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea

Abstract

<p style='text-indent:20px;'>This paper is concerned with chaos and sensitivity via Furstenberg families in a non-autonomous discrete system defined by a sequence of continuous self-maps on a compact metric space <inline-formula><tex-math id="M3">\begin{document}$ (X, \; d) $\end{document}</tex-math></inline-formula>. First we consider the properties <inline-formula><tex-math id="M4">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula> introduced in the literature. We show that if <inline-formula><tex-math id="M6">\begin{document}$ {\mathscr F} $\end{document}</tex-math></inline-formula> is a Furstenberg family with the property <inline-formula><tex-math id="M7">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula> then its dual family <inline-formula><tex-math id="M8">\begin{document}$ k{\mathscr F} $\end{document}</tex-math></inline-formula> has the property <inline-formula><tex-math id="M9">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula> and that if <inline-formula><tex-math id="M10">\begin{document}$ {\mathscr F} $\end{document}</tex-math></inline-formula> is a filter with the property <inline-formula><tex-math id="M11">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula> then its dual family <inline-formula><tex-math id="M12">\begin{document}$ k{\mathscr F} $\end{document}</tex-math></inline-formula> has the property <inline-formula><tex-math id="M13">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula>. Next, for a given positive integer <inline-formula><tex-math id="M14">\begin{document}$ k $\end{document}</tex-math></inline-formula>, it is shown that <inline-formula><tex-math id="M15">\begin{document}$ ({\mathscr F}_{1} , \; {\mathscr F}_{2} )- $\end{document}</tex-math></inline-formula>chaos, generically <inline-formula><tex-math id="M16">\begin{document}$ {\mathscr F}- $\end{document}</tex-math></inline-formula>chaos, dense <inline-formula><tex-math id="M17">\begin{document}$ {\mathscr F}- $\end{document}</tex-math></inline-formula>chaos and <inline-formula><tex-math id="M18">\begin{document}$ {\mathscr F}- $\end{document}</tex-math></inline-formula>sensitivities are inherited under the <inline-formula><tex-math id="M19">\begin{document}$ k $\end{document}</tex-math></inline-formula>th iteration when <inline-formula><tex-math id="M20">\begin{document}$ \{ f_{n} \} _{n = 1}^{\infty } $\end{document}</tex-math></inline-formula> is equicontinuous on <inline-formula><tex-math id="M21">\begin{document}$ X $\end{document}</tex-math></inline-formula> and, <inline-formula><tex-math id="M22">\begin{document}$ {\mathscr F}_{1} , \; {\mathscr F}_{2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M23">\begin{document}$ {\mathscr F} $\end{document}</tex-math></inline-formula> are translation invariant Furstenberg families with the properties <inline-formula><tex-math id="M24">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula>. It is to weaken the condition in the literature that <inline-formula><tex-math id="M26">\begin{document}$ \{ f_{n} \} _{n = 1}^{\infty } $\end{document}</tex-math></inline-formula> uniformly converges on a compact metric space <inline-formula><tex-math id="M27">\begin{document}$ X $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of Multi-sensitive Non-autonomous Systems with Respect to a Vector;Bulletin of the Malaysian Mathematical Sciences Society;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3