Affiliation:
1. Faculty of Mathematics, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
Abstract
<p style='text-indent:20px;'>This paper is concerned with chaos and sensitivity via Furstenberg families in a non-autonomous discrete system defined by a sequence of continuous self-maps on a compact metric space <inline-formula><tex-math id="M3">\begin{document}$ (X, \; d) $\end{document}</tex-math></inline-formula>. First we consider the properties <inline-formula><tex-math id="M4">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula> introduced in the literature. We show that if <inline-formula><tex-math id="M6">\begin{document}$ {\mathscr F} $\end{document}</tex-math></inline-formula> is a Furstenberg family with the property <inline-formula><tex-math id="M7">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula> then its dual family <inline-formula><tex-math id="M8">\begin{document}$ k{\mathscr F} $\end{document}</tex-math></inline-formula> has the property <inline-formula><tex-math id="M9">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula> and that if <inline-formula><tex-math id="M10">\begin{document}$ {\mathscr F} $\end{document}</tex-math></inline-formula> is a filter with the property <inline-formula><tex-math id="M11">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula> then its dual family <inline-formula><tex-math id="M12">\begin{document}$ k{\mathscr F} $\end{document}</tex-math></inline-formula> has the property <inline-formula><tex-math id="M13">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula>. Next, for a given positive integer <inline-formula><tex-math id="M14">\begin{document}$ k $\end{document}</tex-math></inline-formula>, it is shown that <inline-formula><tex-math id="M15">\begin{document}$ ({\mathscr F}_{1} , \; {\mathscr F}_{2} )- $\end{document}</tex-math></inline-formula>chaos, generically <inline-formula><tex-math id="M16">\begin{document}$ {\mathscr F}- $\end{document}</tex-math></inline-formula>chaos, dense <inline-formula><tex-math id="M17">\begin{document}$ {\mathscr F}- $\end{document}</tex-math></inline-formula>chaos and <inline-formula><tex-math id="M18">\begin{document}$ {\mathscr F}- $\end{document}</tex-math></inline-formula>sensitivities are inherited under the <inline-formula><tex-math id="M19">\begin{document}$ k $\end{document}</tex-math></inline-formula>th iteration when <inline-formula><tex-math id="M20">\begin{document}$ \{ f_{n} \} _{n = 1}^{\infty } $\end{document}</tex-math></inline-formula> is equicontinuous on <inline-formula><tex-math id="M21">\begin{document}$ X $\end{document}</tex-math></inline-formula> and, <inline-formula><tex-math id="M22">\begin{document}$ {\mathscr F}_{1} , \; {\mathscr F}_{2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M23">\begin{document}$ {\mathscr F} $\end{document}</tex-math></inline-formula> are translation invariant Furstenberg families with the properties <inline-formula><tex-math id="M24">\begin{document}$ P(k) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$ Q(k) $\end{document}</tex-math></inline-formula>. It is to weaken the condition in the literature that <inline-formula><tex-math id="M26">\begin{document}$ \{ f_{n} \} _{n = 1}^{\infty } $\end{document}</tex-math></inline-formula> uniformly converges on a compact metric space <inline-formula><tex-math id="M27">\begin{document}$ X $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference18 articles.
1. E. Akin., Recurrence in Topological Dynamics, Furstenberg Families and Ellis Actions, ${ref.volume} (1997).
2. W. Huang, D. Khilko, S. Kolyada, G. Zhang.Dynamical compactness and sensitivity, J. Differ. Equ., 260 (2016), 6800-6827.
3. J. Kim and H. Ju, About two definitions of ${\mathscr F}-$sensitivity, Topol. Appl., 269 (2020), 106927, 10pp.
4. S. Kolyada, L. Snoha.Topological entropy of nonautonomous dynamical systems, Random. Comput. Dyn., 4 (1996), 205-233.
5. R. Li, Y. Zhao, H. Wang, R. Jiang, H. Liang.${\mathscr F}-$sensitivity and $({\mathscr F}_{1}, \; {\mathscr F}_{2})-$sensitivity between dynamical systems and their induced hyperspace dynamical systems, J. Nonlinear Sci. Appl., 10 (2017), 1640-1651.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献