Author:
Dorsch Florian,Schulz-Baldes Hermann
Abstract
<p style='text-indent:20px;'>Randomly drawn <inline-formula><tex-math id="M1">\begin{document}$ 2\times 2 $\end{document}</tex-math></inline-formula> matrices induce a random dynamics on the Riemann sphere via the Möbius transformation. Considering a situation where this dynamics is restricted to the unit disc and given by a random rotation perturbed by further random terms depending on two competing small parameters, the invariant (Furstenberg) measure of the random dynamical system is determined. The results have applications to the perturbation theory of Lyapunov exponents which are of relevance for one-dimensional discrete random Schrödinger operators.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献