Using normal forms to study Oterma's transition in the Planar RTBP

Author:

Duarte Gladston12,Jorba Àngel1

Affiliation:

1. Departament de Matemàtiques i Informàtica, Universitat de Barcelona & Barcelona Graduate School of Mathematics, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain

2. Faculty of Applied Mathematics, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059, Kraków, Poland

Abstract

<p style='text-indent:20px;'>Comet 39P/Oterma is known to make fast transitions between heliocentric orbits outside and inside the orbit of Jupiter. In this note the dynamics of Oterma is quantitatively studied via an explicit computation of high order Birkhoff normal forms at the points <inline-formula><tex-math id="M1">\begin{document}$ L_1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ L_2 $\end{document}</tex-math></inline-formula> of the Planar Restricted Three-Body Problem. A previous work [<xref ref-type="bibr" rid="b14">14</xref>] has shown the existence of heteroclinic connections between the neigbourhood of <inline-formula><tex-math id="M3">\begin{document}$ L_1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ L_2 $\end{document}</tex-math></inline-formula> which provide paths for this transition. Here we combine real data on the motion of Oterma with normal forms to compute the invariant objects that are responsible for this transition.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Reference22 articles.

1. A. Deprit.Canonical transformations depending on a small parameter, Celestial Mech., 1 (1969/1970), 12-30.

2. G. Duarte and À. Jorba, Invariant manifolds of tori near ${L}_1$ and ${L}_2$ in the Planar Elliptic RTBP, In preparation, 2022.

3. G. Duarte and À. Jorba, Modelling Oterma's transition using the Planar Elliptic RTBP, In preparation, 2022.

4. E. J. Doedel, R. C. Paenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, Auto 2000: Continuation and bifurcation software for ordinary differential equations (with homcont), 1997.

5. L. Dieci, J. Rebaza.Point-to-periodic and periodic-to-periodic connections, BIT Numerical Mathematics, 44 (2004), 41-62.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3