Author:
Sun Jian-Wen,Kim Seonghak
Abstract
<p style='text-indent:20px;'>We estimate decay rates of solutions to the initial-boundary value problem for a class of quasilinear parabolic equations in any dimension. Such decay rates depend only on the constitutive relations, spatial domain, and range of the initial function.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference20 articles.
1. X.-Y. Chen, H. Matano.Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.
2. M. D. Donsker, S. R. S. Varadhan.On the principal eigenvalue of second-order elliptic differential operators, Comm. Pure Appl. Math., 29 (1976), 595-621.
3. L. C. Evans, Partial Differential Equations. Second Edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
4. E. Feireisl, F. Simondon.Convergence for degenerate parabolic equations, J. Differential Equations, 152 (1999), 439-466.
5. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.