Affiliation:
1. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
Abstract
<p style='text-indent:20px;'>We investigate global well-posedness to nonhomogeneous magneto-micropolar fluid equations with zero density at infinity in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^2 $\end{document}</tex-math></inline-formula>. We show the global existence and uniqueness of strong solutions. It should be pointed out that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Our method relies crucially upon the duality principle of BMO space and Hardy space, a lemma of Coifman-Lions-Meyer-Semmes (Coifman et al. in J Math Pures Appl 72: 247–286, 1993), and cancelation properties of the system under consideration.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference22 articles.
1. G. Ahmadi, M. Shahinpoor.Universal stability of magneto-micropolar fluid motions, Internat. J. Engrg. Sci., 12 (1974), 657-663.
2. J. L. Boldrini, M. A. Rojas-Medar, E. Fernández-Cara.Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl., 82 (2003), 1499-1525.
3. P. Braz e Silva, F. W. Cruz, M. Loayza, M. A. Rojas-Medar.Global unique solvability of nonhomogeneous asymmetric fluids: A Lagrangian approach, J. Differential Equations, 269 (2020), 1319-1348.
4. R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes.Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.
5. C. He, Z. Xin.On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献