Author:
She Lianbing,Freitas Mirelson M.,Vinhote Mauricio S.,Wang Renhai
Abstract
<p style='text-indent:20px;'>This paper is concerned with the asymptotic behavior of solutions to a class of nonlinear coupled discrete wave equations defined on the whole integer set. We first establish the well-posedness of the systems in <inline-formula><tex-math id="M1">\begin{document}$ E: = \ell^2\times\ell^2\times\ell^2\times\ell^2 $\end{document}</tex-math></inline-formula>. We then prove that the solution semigroup has a unique global attractor in <inline-formula><tex-math id="M2">\begin{document}$ E $\end{document}</tex-math></inline-formula>. We finally prove that this attractor can be approximated in terms of upper semicontinuity of <inline-formula><tex-math id="M3">\begin{document}$ E $\end{document}</tex-math></inline-formula> by a finite-dimensional global attractor of a <inline-formula><tex-math id="M4">\begin{document}$ 2(2n+1) $\end{document}</tex-math></inline-formula>-dimensional truncation system as <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula> goes to infinity. The idea of uniform tail-estimates developed by Wang (Phys. D, 128 (1999) 41-52) is employed to prove the asymptotic compactness of the solution semigroups in order to overcome the lack of compactness in infinite lattices.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics