Boundary layer solutions to singularly perturbed quasilinear systems

Author:

Butuzov Valentin,Nefedov Nikolay,Omel'chenko Oleh,Recke Lutz

Abstract

<p style='text-indent:20px;'>We consider weak boundary layer solutions to the singularly perturbed ODE systems of the type <inline-formula><tex-math id="M1">\begin{document}$ \varepsilon^2\left(A(x, u(x), \varepsilon)u'(x)\right)' = f(x, u(x), \varepsilon) $\end{document}</tex-math></inline-formula>. The new features are that we do not consider one scalar equation, but systems, that the systems are allowed to be quasilinear, and that the systems are spatially non-smooth. Although the results about existence, asymptotic behavior, local uniqueness and stability of boundary layer solutions are similar to those known for semilinear, scalar and smooth problems, there are at least three essential differences. First, the asymptotic convergence rates valid for smooth problems are not true anymore, in general, in the non-smooth case. Second, a specific local uniqueness condition from the scalar case is not sufficient anymore in the vectorial case. And third, the monotonicity condition, which is sufficient for stability of boundary layers in the scalar case, must be adjusted to the vectorial case.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Logistic equation with long delay feedback;Дифференциальные уравнения;2024-02-15

2. Logistic Equation with Long Delay Feedback;Differential Equations;2024-02

3. Nonsmooth regular perturbations of singularly perturbed problems;Journal of Differential Equations;2023-12

4. Dynamics of a System of Two Equations with a Large Delay;Doklady Mathematics;2023-10

5. DYNAMICS OF A SYSTEM OF TWO EQUATIONS WITH A LARGE DELAY;Доклады Российской академии наук. Математика, информатика, процессы управления;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3