Abstract
<p style='text-indent:20px;'>In this paper we consider an <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula> dimensional piecewise smooth dynamical system. This system has a co-dimension 2 switching manifold <inline-formula><tex-math id="M2">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula> which is an intersection of two hyperplanes <inline-formula><tex-math id="M3">\begin{document}$ \Sigma_1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \Sigma_2 $\end{document}</tex-math></inline-formula>. We investigate the relation between periodic orbit of PWS system and periodic orbit of its double regularized system. If this PWS system has an asymptotically stable sliding periodic orbit(including type Ⅰ and type Ⅱ), we establish conditions to ensure that also a double regularization of the given system has a unique, asymptotically stable, periodic orbit in a neighbourhood of <inline-formula><tex-math id="M5">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula>, converging to <inline-formula><tex-math id="M6">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula> as both of the two regularization parameters go to <inline-formula><tex-math id="M7">\begin{document}$ 0 $\end{document}</tex-math></inline-formula> by applying implicit function theorem and geometric singular perturbation theory.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference39 articles.
1. J. Alexander, T. Seidman.Sliding modes in intersecting switching surfaces. I. Blending, Houston J. Math., 24 (1998), 545-569.
2. M. Antali, G. Stepan.Sliding and crossing dynamics in extended Filippov systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 823-858.
3. J. Awrejcewicz, M. Fe$\breve{c}$kan, P. Olejnik.On continuous approximation of discontnuous systems, Nonlinear Anal., 62 (2005), 1317-1331.
4. M. Di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci., 163, Springer-Verlag, London, 2008.
5. C. Bonet-Reves Reves, J. Larrosa, T. M-Seara.Regularization around a generic codimension one fold-fold singularity, J. Differential Equations, 265 (2018), 1761-1838.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献