Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $

Author:

Zhang Xiaohui1,Zhang Xuping1

Affiliation:

1. Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

Abstract

<p style='text-indent:20px;'>This paper deals with the asymptotic behavior of the solutions to a class of non-autonomous <i>fractional</i> stochastic <inline-formula><tex-math id="M3">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian equation driven by linear additive noise on the entire space <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>. We firstly prove the existence of a continuous non-autonomous cocycle for the equation as well as the uniform estimates of solutions. We then show pullback asymptotical compactness of solutions as well as the existence and uniqueness of tempered random attractors and the uniform tail-estimates of the solutions for large space variables when time is large enough to surmount the lack of compact Sobolev embeddings on unbounded domains. Finally, we establish the upper semi-continuity of the random attractors when noise intensity approaches zero.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3