Numerical threshold of linearly implicit Euler method for nonlinear infection-age SIR models

Author:

Yang Huizi12,Yang Zhanwen3,Liu Shengqiang4

Affiliation:

1. Automation, Southeast University, Nanjing, 210096, China

2. School of Mathematics and Statistic Science, Ludong University, Yantai, 264025, China

3. School of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

4. School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China

Abstract

<p style='text-indent:20px;'>In this paper, we consider a numerical threshold of a linearly implicit Euler method for a nonlinear infection-age SIR model. It is shown that the method shares the equilibria and basic reproduction number <inline-formula><tex-math id="M1">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula> of age-independent SIR models for any stepsize. Namely, the disease-free equilibrium is globally stable for numerical processes when <inline-formula><tex-math id="M2">\begin{document}$ R_0&lt;1 $\end{document}</tex-math></inline-formula> and the underlying endemic equilibrium is globally stable for numerical processes when <inline-formula><tex-math id="M3">\begin{document}$ R_0&gt;1 $\end{document}</tex-math></inline-formula>. A natural extension to nonlinear infection-age models is presented with an initial mortality rate and the numerical thresholds, i.e., numerical basic reproduction numbers <inline-formula><tex-math id="M4">\begin{document}$ R^h $\end{document}</tex-math></inline-formula>, are presented according to the infinite Leslie matrix. Although the numerical basic reproduction numbers <inline-formula><tex-math id="M5">\begin{document}$ R^h $\end{document}</tex-math></inline-formula> are not quadrature approximations to the exact threshold <inline-formula><tex-math id="M6">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula>, the disease-free equilibrium is locally stable for numerical processes whenever <inline-formula><tex-math id="M7">\begin{document}$ R^h&lt;1 $\end{document}</tex-math></inline-formula>. Moreover, a unique numerical endemic equilibrium exists for <inline-formula><tex-math id="M8">\begin{document}$ R^h&gt;1 $\end{document}</tex-math></inline-formula>, which is locally stable for numerical processes. It is much more important that both the numerical thresholds and numerical endemic equilibria converge to the exact ones with accuracy of order 1. Therefore, the local dynamical behaviors of nonlinear infection-age models are visually displayed by the numerical processes. Finally, numerical applications to the influenza models are shown to illustrate our results.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3