Analytic continuation of noisy data using Adams Bashforth residual neural network

Author:

Xie Xuping,Bao Feng,Maier Thomas,Webster Clayton

Abstract

<p style='text-indent:20px;'>We propose a data-driven learning framework for the analytic continuation problem in numerical quantum many-body physics. Designing an accurate and efficient framework for the analytic continuation of imaginary time using computational data is a grand challenge that has hindered meaningful links with experimental data. The standard Maximum Entropy (MaxEnt)-based method is limited by the quality of the computational data and the availability of prior information. Also, the MaxEnt is not able to solve the inversion problem under high level of noise in the data. Here we introduce a novel learning model for the analytic continuation problem using a Adams-Bashforth residual neural network (AB-ResNet). The advantage of this deep learning network is that it is model independent and, therefore, does not require prior information concerning the quantity of interest given by the spectral function. More importantly, the ResNet-based model achieves higher accuracy than MaxEnt for data with higher level of noise. Finally, numerical examples show that the developed AB-ResNet is able to recover the spectral function with accuracy comparable to MaxEnt where the noise level is relatively small.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference45 articles.

1. L.-F. Arsenault, R. Neuberg, L. A. Hannah and A. J. Millis, Projected regression methods for inverting fredholm integrals: Formalism and application to analytical continuation, arXiv preprint arXiv: 1612.04895, 2016.

2. L.-F. Arsenault, R. Neuberg, L. A. Hannah and A. J. Millis, Projected regression method for solving fredholm integral equations arising in the analytic continuation problem of quantum physics, Inverse Problems, 33 (2017), 115007.

3. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, volume 61, SIAM, Philadelphia, PA, 1998.

4. F. Bao, Y. Tang, M. Summers, G. Zhang, C. Webster, V. Scarola and T. A. Maier, Fast and efficient stochastic optimization for analytic continuation, Physical Review B, 94 (2016), 125149.

5. K. S. D. Beach, Identifying the maximum entropy method as a special limit of stochastic analytic continuation, arXiv preprint arXiv: cond-mat/0403055, 2004.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3