Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements

Author:

Favini Angelo1,Mola Gianluca2,Romanelli Silvia3

Affiliation:

1. Dipartimento di Matematica, Universitá di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna BO, Italy

2. Department of Science and Engeneering, Sorbonne Unversity Abu Dhabi, Al Reem Island, 51133 Abu Dhabi, United Arab Emirates

3. Dipartimento di Matematica, Universitá degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari BA, Italy

Abstract

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \left(H, \langle \cdot, \cdot \rangle \right) $\end{document}</tex-math></inline-formula> be a separable Hilbert space and <inline-formula><tex-math id="M2">\begin{document}$ A_{i}:D(A_i) \to H $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M3">\begin{document}$ i = 1, \cdots, n $\end{document}</tex-math></inline-formula>) be a family of nonnegative selfadjoint operators mutually commuting. We study the inverse problem consisting in the identification of the function <inline-formula><tex-math id="M4">\begin{document}$ u:[0, T] \to H $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula> time-dependent <i>diffusion coefficients</i> <inline-formula><tex-math id="M6">\begin{document}$ \alpha_{1}, \cdots, \alpha_{n}:[s, T] \to {\mathbb{R}}_+ $\end{document}</tex-math></inline-formula> that fulfill the initial-value problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u'(t) + \alpha_{1}(t) A_{1}u(t) + \cdots + \alpha_{n}(t) A_{n}u(t) = 0, \quad s \leq t \leq T, \quad u(s) = x, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and the additional conditions</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \langle A_{1} u(t), u(t)\rangle = \varphi_{1}(t), \quad \cdots \quad, \langle A_{n} u(t), u(t)\rangle = \varphi_{n}(t), \quad s \leq t \leq T. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Under suitable assumptions on the operators <inline-formula><tex-math id="M7">\begin{document}$ A_i $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ i = 1, \cdots, n $\end{document}</tex-math></inline-formula>, on the initial data <inline-formula><tex-math id="M9">\begin{document}$ x\in H $\end{document}</tex-math></inline-formula> and on the given functions <inline-formula><tex-math id="M10">\begin{document}$ \varphi_i $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$ i = 1, \cdots, n $\end{document}</tex-math></inline-formula>, we shall prove that the solution of such a problem exists, is unique and depends continuously on the data. We apply the abstract result to the identification of diffusion coefficients in a heat equation and of the Lamé parameters in an elasticity problem on a plate.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3