Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements
-
Published:2022
Issue:6
Volume:15
Page:1439
-
ISSN:1937-1632
-
Container-title:Discrete and Continuous Dynamical Systems - S
-
language:
-
Short-container-title:DCDS-S
Author:
Favini Angelo1, Mola Gianluca2, Romanelli Silvia3
Affiliation:
1. Dipartimento di Matematica, Universitá di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna BO, Italy 2. Department of Science and Engeneering, Sorbonne Unversity Abu Dhabi, Al Reem Island, 51133 Abu Dhabi, United Arab Emirates 3. Dipartimento di Matematica, Universitá degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari BA, Italy
Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \left(H, \langle \cdot, \cdot \rangle \right) $\end{document}</tex-math></inline-formula> be a separable Hilbert space and <inline-formula><tex-math id="M2">\begin{document}$ A_{i}:D(A_i) \to H $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M3">\begin{document}$ i = 1, \cdots, n $\end{document}</tex-math></inline-formula>) be a family of nonnegative selfadjoint operators mutually commuting. We study the inverse problem consisting in the identification of the function <inline-formula><tex-math id="M4">\begin{document}$ u:[0, T] \to H $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula> time-dependent <i>diffusion coefficients</i> <inline-formula><tex-math id="M6">\begin{document}$ \alpha_{1}, \cdots, \alpha_{n}:[s, T] \to {\mathbb{R}}_+ $\end{document}</tex-math></inline-formula> that fulfill the initial-value problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u'(t) + \alpha_{1}(t) A_{1}u(t) + \cdots + \alpha_{n}(t) A_{n}u(t) = 0, \quad s \leq t \leq T, \quad u(s) = x, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and the additional conditions</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \langle A_{1} u(t), u(t)\rangle = \varphi_{1}(t), \quad \cdots \quad, \langle A_{n} u(t), u(t)\rangle = \varphi_{n}(t), \quad s \leq t \leq T. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Under suitable assumptions on the operators <inline-formula><tex-math id="M7">\begin{document}$ A_i $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ i = 1, \cdots, n $\end{document}</tex-math></inline-formula>, on the initial data <inline-formula><tex-math id="M9">\begin{document}$ x\in H $\end{document}</tex-math></inline-formula> and on the given functions <inline-formula><tex-math id="M10">\begin{document}$ \varphi_i $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$ i = 1, \cdots, n $\end{document}</tex-math></inline-formula>, we shall prove that the solution of such a problem exists, is unique and depends continuously on the data. We apply the abstract result to the identification of diffusion coefficients in a heat equation and of the Lamé parameters in an elasticity problem on a plate.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference15 articles.
1. M. Akamatsu, G. Nakamura, S. Steinberg.Identification of Lamé coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354. 2. K.-C. Chang, Methods in Nonlinear Analysis, Monographs in Mathematics, Springer-Verlag, Berlin and New York, 2005. 3. D. Huang, Y. Li and D. Pei, Identification of a time-dependent coefficient in heat conduction problem by new iteration method, Adv. Math. Phys., 2018 (2018), Art. ID 4918256, 7 pp. 4. M. Ivanchov, Inverse Problems for Equations of Parabolic Type, VNTL Publications, L'viv, Ukraine, 2003. 5. N. I. Ivanchov.On the inverse problem of simultaneous determination of thermal conductivity and specific heat capacity, Sib. Math. J., 35 (1994), 547-555.
|
|