Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction

Author:

Aissa Akram Ben

Abstract

<p style='text-indent:20px;'>In the paper under study, we consider the following coupled non-degenerate Kirchhoff system</p><p style='text-indent:20px;'><disp-formula><label/><tex-math id="FE0"> \begin{document}$\begin{equation} \left \{ \begin{aligned} &amp; y_{tt}-\mathtt{φ}\Big(\int_\Omega | \nabla y |^2\,dx\Big)\Delta y +\mathtt{α} \Delta \mathtt{θ} = 0, &amp;{\rm{ in }}&amp;\; \Omega \times (0, +\infty)\\ &amp; \mathtt{θ}_t-\Delta \mathtt{θ}-\mathtt{β} \Delta y_t = 0, &amp;{\rm{ in }}&amp;\; \Omega \times (0, +\infty)\\ &amp; y = \mathtt{θ} = 0,\; &amp;{\rm{ on }}&amp;\;\partial\Omega\times(0, +\infty)\\ &amp; y(\cdot, 0) = y_0, \; y_t(\cdot, 0) = y_1,\;\mathtt{θ}(\cdot, 0) = \mathtt{θ}_0, \; \; &amp;{\rm{ in }}&amp;\; \Omega\\ \end{aligned} \right. \end{equation} \ \ \ \ \ \ \ \ \ \ \ \ \ (1)$ \end{document}</tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded open subset of <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \mathtt{α} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \mathtt{β} $\end{document}</tex-math></inline-formula> be two nonzero real numbers with the same sign and <inline-formula><tex-math id="M5">\begin{document}$ \mathtt{φ} $\end{document}</tex-math></inline-formula> is given by <inline-formula><tex-math id="M6">\begin{document}$ \mathtt{φ}(s) = \mathfrak{m}_0+\mathfrak{m}_1s $\end{document}</tex-math></inline-formula> with some positive constants <inline-formula><tex-math id="M7">\begin{document}$ \mathfrak{m}_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \mathfrak{m}_1 $\end{document}</tex-math></inline-formula>. So we prove existence of solution and establish its exponential decay. The method used is based on multiplier technique and some integral inequalities due to Haraux and Komornik[<xref ref-type="bibr" rid="b5">5</xref>,<xref ref-type="bibr" rid="b8">8</xref>].</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference17 articles.

1. R. A. Adams, Sobolev Spaces, Academic press, Pure and Applied Mathematics, vol. 65, 1975.

2. P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electron. J. Differential Equations, 2000 (2000), No. 22, 15 pp.

3. A. Benaissa, A. Guesmia.Global existence and general decay estimates of solutions for degenerate or non-degenerate Kirchhoff equation with general dissipation, J. Evol. Equation, 11 (2011), 1399-1424.

4. B. Gilbert, A. Ben Aissa and S. Nicaise, Same decay rate of second order evolution equations with or without delay, Systems Control Lett., 141 (2020), 104700, 8 pp.

5. A. Haraux, Two remarks on dissipative hyperbolic problems, in Lions, J. L. and Brezis, H. (Eds): Nonlinear Partial Differential Equations and Their Applications, College de France Seminar Volume XVIII (Research Notes in Mathematics, Vol. 122), Pitman: Boston, MA, (1985), 161–179.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3