Abstract
<p style='text-indent:20px;'>In the paper under study, we consider the following coupled non-degenerate Kirchhoff system</p><p style='text-indent:20px;'><disp-formula><label/><tex-math id="FE0"> \begin{document}$\begin{equation} \left \{ \begin{aligned} & y_{tt}-\mathtt{φ}\Big(\int_\Omega | \nabla y |^2\,dx\Big)\Delta y +\mathtt{α} \Delta \mathtt{θ} = 0, &{\rm{ in }}&\; \Omega \times (0, +\infty)\\ & \mathtt{θ}_t-\Delta \mathtt{θ}-\mathtt{β} \Delta y_t = 0, &{\rm{ in }}&\; \Omega \times (0, +\infty)\\ & y = \mathtt{θ} = 0,\; &{\rm{ on }}&\;\partial\Omega\times(0, +\infty)\\ & y(\cdot, 0) = y_0, \; y_t(\cdot, 0) = y_1,\;\mathtt{θ}(\cdot, 0) = \mathtt{θ}_0, \; \; &{\rm{ in }}&\; \Omega\\ \end{aligned} \right. \end{equation} \ \ \ \ \ \ \ \ \ \ \ \ \ (1)$ \end{document}</tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded open subset of <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \mathtt{α} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \mathtt{β} $\end{document}</tex-math></inline-formula> be two nonzero real numbers with the same sign and <inline-formula><tex-math id="M5">\begin{document}$ \mathtt{φ} $\end{document}</tex-math></inline-formula> is given by <inline-formula><tex-math id="M6">\begin{document}$ \mathtt{φ}(s) = \mathfrak{m}_0+\mathfrak{m}_1s $\end{document}</tex-math></inline-formula> with some positive constants <inline-formula><tex-math id="M7">\begin{document}$ \mathfrak{m}_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \mathfrak{m}_1 $\end{document}</tex-math></inline-formula>. So we prove existence of solution and establish its exponential decay. The method used is based on multiplier technique and some integral inequalities due to Haraux and Komornik[<xref ref-type="bibr" rid="b5">5</xref>,<xref ref-type="bibr" rid="b8">8</xref>].</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference17 articles.
1. R. A. Adams, Sobolev Spaces, Academic press, Pure and Applied Mathematics, vol. 65, 1975.
2. P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electron. J. Differential Equations, 2000 (2000), No. 22, 15 pp.
3. A. Benaissa, A. Guesmia.Global existence and general decay estimates of solutions for degenerate or non-degenerate Kirchhoff equation with general dissipation, J. Evol. Equation, 11 (2011), 1399-1424.
4. B. Gilbert, A. Ben Aissa and S. Nicaise, Same decay rate of second order evolution equations with or without delay, Systems Control Lett., 141 (2020), 104700, 8 pp.
5. A. Haraux, Two remarks on dissipative hyperbolic problems, in Lions, J. L. and Brezis, H. (Eds): Nonlinear Partial Differential Equations and Their Applications, College de France Seminar Volume XVIII (Research Notes in Mathematics, Vol. 122), Pitman: Boston, MA, (1985), 161–179.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献