Author:
Srivastava Hari Mohan,Mohammed Pshtiwan Othman,Guirao Juan L. G.,Hamed Y. S.
Abstract
<p style='text-indent:20px;'>We consider a class of initial fractional Liouville-Caputo difference equations (IFLCDEs) and its corresponding initial uncertain fractional Liouville-Caputo difference equations (IUFLCDEs). Next, we make comparisons between two unique solutions of the IFLCDEs by deriving an important theorem, namely the main theorem. Besides, we make comparisons between IUFLCDEs and their <inline-formula><tex-math id="M1">\begin{document}$ \varrho $\end{document}</tex-math></inline-formula>-paths by deriving another important theorem, namely the link theorem, which is obtained by the help of the main theorem. We consider a special case of the IUFLCDEs and its solution involving the discrete Mittag-Leffler. Also, we present the solution of its <inline-formula><tex-math id="M2">\begin{document}$ \varrho $\end{document}</tex-math></inline-formula>-paths via the solution of the special linear IUFLCDE. Furthermore, we derive the uniqueness of IUFLCDEs. Finally, we present some test examples of IUFLCDEs by using the uniqueness theorem and the link theorem to find a relation between the solutions for the IUFLCDEs of symmetrical uncertain variables and their <inline-formula><tex-math id="M3">\begin{document}$ \varrho $\end{document}</tex-math></inline-formula>-paths.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献