Author:
Glitzky Annegret,Liero Matthias,Nika Grigor
Abstract
<p style='text-indent:20px;'>An effective system of partial differential equations describing the heat and current flow through a thin organic light-emitting diode (OLED) mounted on a glass substrate is rigorously derived from a recently introduced fully three-dimensional <inline-formula><tex-math id="M1">\begin{document}$ p(x) $\end{document}</tex-math></inline-formula>-Laplace thermistor model. The OLED consists of several thin layers that scale differently with respect to the multiscale parameter <inline-formula><tex-math id="M2">\begin{document}$ \varepsilon>0 $\end{document}</tex-math></inline-formula>, which is the ratio between the total thickness and the lateral extent of the OLED. Starting point of the derivation is a rescaled formulation of the current-flow equation in the OLED for the driving potential and the heat equation in OLED and glass substrate with Joule heat term concentrated in the OLED. Assuming physically motivated scalings in the electrical flux functions, uniform a priori bounds are derived for the solutions of the three-dimensional system which facilitates the extraction of converging subsequences with limits that are identified as solutions of a dimension reduced system. In the latter, the effective current-flow equation is given by two semilinear equations in the two-dimensional cross-sections of the electrodes and algebraic equations for the continuity of the electrical fluxes through the organic layers. The effective heat equation is formulated only in the glass substrate with Joule heat term on the part of the boundary where the OLED is mounted.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献