Abstract
<p style='text-indent:20px;'>In this paper, for the damped generalized incompressible Navier-Stokes equations on <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{T}^{2} $\end{document}</tex-math></inline-formula> as the index <inline-formula><tex-math id="M3">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula> of the general dissipative operator <inline-formula><tex-math id="M4">\begin{document}$ (-\Delta)^{\alpha} $\end{document}</tex-math></inline-formula> belongs to <inline-formula><tex-math id="M5">\begin{document}$ (0,\frac{1}{2}] $\end{document}</tex-math></inline-formula>, we prove the absence of anomalous dissipation of the long time averages of entropy. We also give a note to show that, by using the <inline-formula><tex-math id="M6">\begin{document}$ L^{\infty} $\end{document}</tex-math></inline-formula> bounds given in Caffarelli et al. [<xref ref-type="bibr" rid="b4">4</xref>], the absence of anomalous dissipation of the long time averages of energy for the forced SQG equations established in Constantin et al. [<xref ref-type="bibr" rid="b12">12</xref>] still holds under a slightly weaker conditions <inline-formula><tex-math id="M7">\begin{document}$ \theta_{0}\in L^{1}(\mathbb{R}^{2})\cap L^{2}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ f \in L^{1}(\mathbb{R}^{2})\cap L^{p}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with some <inline-formula><tex-math id="M9">\begin{document}$ p>2 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献