Author:
Liu Wenjun,Yu Jiangyong,Li Gang
Abstract
<p style='text-indent:20px;'>In this paper, we study the fractional pseudo-parabolic equations <inline-formula><tex-math id="M1">\begin{document}$ u_{t} + \left(-\Delta\right)^{s} u + \left(-\Delta\right)^{s} u_{t} = u\log \left| u \right| $\end{document}</tex-math></inline-formula>. Firstly, we recall the relationship between the fractional Laplace operator <inline-formula><tex-math id="M2">\begin{document}$ \left(-\Delta\right)^{s} $\end{document}</tex-math></inline-formula> and the fractional Sobolev space <inline-formula><tex-math id="M3">\begin{document}$ H^{s} $\end{document}</tex-math></inline-formula> and discuss the invariant sets and the vacuum isolating behavior of solutions with the help of a family of potential wells. Then, we derive a threshold result of existence of weak solution: for the low initial energy case (i.e., <inline-formula><tex-math id="M4">\begin{document}$ J(u_{0}) < d $\end{document}</tex-math></inline-formula>), the solution is global in time with <inline-formula><tex-math id="M5">\begin{document}$ I(u_{0}) >0 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M6">\begin{document}$ \Vert u_{0}\Vert_{{X_{0}(\Omega)}} = 0 $\end{document}</tex-math></inline-formula> and blows up at <inline-formula><tex-math id="M7">\begin{document}$ +\infty $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M8">\begin{document}$ I(u_{0}) < 0 $\end{document}</tex-math></inline-formula>; for the critical initial energy case (i.e., <inline-formula><tex-math id="M9">\begin{document}$ J(u_{0}) = d $\end{document}</tex-math></inline-formula>), the solution is global in time with <inline-formula><tex-math id="M10">\begin{document}$ I(u_{0}) \geq0 $\end{document}</tex-math></inline-formula> and blows up at <inline-formula><tex-math id="M11">\begin{document}$ +\infty $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M12">\begin{document}$ I(u_{0}) < 0 $\end{document}</tex-math></inline-formula>. The decay estimate of the energy functional for the global solution is also given.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference53 articles.
1. A. Alsaedi, B. Ahmad, M. Kirane, B. T. Torebek.Blowing-up solutions of the time-fractional dispersive equations, Adv. Nonlinear Anal., 10 (2021), 952-971.
2. D. Applebaum.Lévy processes–-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
3. D. Applebaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
4. V. V. Au et al..On a final value problem for a nonlinear fractional pseudo-parabolic equation, Electron. Res. Arch., 29 (2021), 1709-1734.
5. T. B. Benjamin, J. L. Bona, J. J. Mahony.Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献