Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping

Author:

Han Zhong-Jie1,Liu Zhuangyi2,Wang Jing3

Affiliation:

1. School of Mathematics, Tianjin University, Tianjin 300354, China

2. Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812-3000, USA

3. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 102488, China

Abstract

<p style='text-indent:20px;'>This paper is on the asymptotic behavior of the elastic string equation with localized Kelvin-Voigt damping</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_{tt}(x, t)-[u_{x}(x, t)+b(x)u_{x, t}(x, t)]_{x} = 0, \; x\in(-1, 1), \; t&gt;0, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b(x) = 0 $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M2">\begin{document}$ x\in (-1, 0] $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M3">\begin{document}$ b(x) = a(x)&gt;0 $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M4">\begin{document}$ x\in (0, 1) $\end{document}</tex-math></inline-formula>. It is known that the Geometric Optics Condition for exponential stability does not apply to Kelvin-Voigt damping. Under the assumption that <inline-formula><tex-math id="M5">\begin{document}$ a'(x) $\end{document}</tex-math></inline-formula> has a singularity at <inline-formula><tex-math id="M6">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>, we investigate the decay rate of the solution which depends on the order of the singularity.</p><p style='text-indent:20px;'>When <inline-formula><tex-math id="M7">\begin{document}$ a(x) $\end{document}</tex-math></inline-formula> behaves like <inline-formula><tex-math id="M8">\begin{document}$ x^{\alpha}(-\log x)^{-\beta} $\end{document}</tex-math></inline-formula> near <inline-formula><tex-math id="M9">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M10">\begin{document}$ 0\le{\alpha}&lt;1, \;0\le\beta $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;{\alpha}&lt;1, \;\beta&lt;0 $\end{document}</tex-math></inline-formula>, we show that the system can achieve a mixed polynomial-logarithmic decay rate.</p><p style='text-indent:20px;'>As a byproduct, when <inline-formula><tex-math id="M12">\begin{document}$ \beta = 0 $\end{document}</tex-math></inline-formula>, we obtain the decay rate <inline-formula><tex-math id="M13">\begin{document}$ t^{-\frac{ 3-\alpha-\varepsilon}{2(1-{\alpha})}} $\end{document}</tex-math></inline-formula> of solution for arbitrarily small <inline-formula><tex-math id="M14">\begin{document}$ \varepsilon&gt;0 $\end{document}</tex-math></inline-formula>, which improves the rate <inline-formula><tex-math id="M15">\begin{document}$ t^{-\frac{1}{1-{\alpha}}} $\end{document}</tex-math></inline-formula> obtained in [<xref ref-type="bibr" rid="b14">14</xref>]. The new rate is again consistent with the exponential decay rate in the limit case <inline-formula><tex-math id="M16">\begin{document}$ \alpha\to 1^- $\end{document}</tex-math></inline-formula>. This is a step toward the goal of obtaining the optimal decay rate eventually.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3