Affiliation:
1. Institute of Applied Analysis, Ulm University, 89069 Ulm, Germany
Abstract
<p style='text-indent:20px;'>We use form methods to define suitable realisations of the Laplacian on a domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> with Wentzell boundary conditions, i.e. such that <inline-formula><tex-math id="M2">\begin{document}$ \partial_ { \rm{{n}}} u + \beta u + \Delta u = 0 $\end{document}</tex-math></inline-formula> holds in a suitable sense on the boundary of <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>. For those realisations, we study their semigroup generation properties. Using the approximative trace, we give a unified treatment that in part allows irregular and even fractal domains. Moreover, we admit <inline-formula><tex-math id="M4">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> to be merely essentially bounded and complex-valued. If the domain is Lipschitz, we obtain a kernel continuous up to the boundary.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference27 articles.
1. H. Amann, J. Escher.Strongly continuous dual semigroups, Ann. Mat. Pura Appl., 171 (1996), 41-62.
2. W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, Evolutionary equations, Vol. Ⅰ, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, 1–85.
3. W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, second ed., Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011.
4. W. Arendt, R. Chill, C. Seifert, H. Vogt and J. Voigt, Form Methods for Evolution Equations, and Applications, 2014/2015, lecture notes, 18th International Internet Seminar. Online at http://www.mat.tuhh.de/isem18.
5. W. Arendt, G. Metafune, D. Pallara, S. Romanelli.The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, 67 (2003), 247-261.