Author:
Wang Jingyu,Wang Yejuan,Yang Lin,Caraballo Tomás
Abstract
<p style='text-indent:20px;'>A non-autonomous stochastic delay wave equation with linear memory and nonlinear damping driven by additive white noise is considered on the unbounded domain <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>. We establish the existence and uniqueness of a random attractor <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{A} $\end{document}</tex-math></inline-formula> that is compact in <inline-formula><tex-math id="M3">\begin{document}$ C{([-h, 0];H^1(\mathbb{R}^n))}\times C{([-h, 0];L^2(\mathbb{R}^n))}\times L_\mu^2(\mathbb{R}^+;H^1(\mathbb{R}^n)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ 1\leqslant n \leqslant 3 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference43 articles.
1. L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.
2. J. Arrieta, A. N. Carvalho, J. K. Hale.A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.
3. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland, Amsterdam, 1992.
4. J. M. Ball.Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.
5. S. Borini, V. Pata.Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.