Author:
Han Xiaoying,Kloeden Peter E.
Abstract
<p style='text-indent:20px;'>A nonautonomous lattice system with discrete Laplacian operator is revisited in the weighted space of infinite sequences <inline-formula><tex-math id="M1">\begin{document}$ {{\ell_{\rho}^2}} $\end{document}</tex-math></inline-formula>. First the existence of a pullback attractor in <inline-formula><tex-math id="M2">\begin{document}$ {{\ell_{\rho}^2}} $\end{document}</tex-math></inline-formula> is established by utilizing the dense inclusion of <inline-formula><tex-math id="M3">\begin{document}$ \ell^2 \subset {{\ell_{\rho}^2}} $\end{document}</tex-math></inline-formula>. Moreover, the pullback attractor is shown to consist of a singleton trajectory when the lattice system is uniformly strictly contracting. Then forward dynamics is investigated in terms of the existence of a nonempty compact forward omega limit set. A general class of weights for the sequence space are adopted, instead of particular types of weights often used in the literature. The analysis presented in this work is more direct compare with previous studies.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献