Author:
Liu Jinxing,Wang Xiongrui,Zhou Jun,Zhang Huan
Abstract
<p style='text-indent:20px;'>This paper deals with the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. By using some ordinary differential inequalities, the conditions on finite time blow-up of solutions are given with suitable assumptions on initial values. Moreover, the upper and lower bounds of the blow-up time are also investigated.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference42 articles.
1. J. L. Bona, R. L. Sachs.Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.
2. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55–108. http://dialnet.unirioja.es/descarga/articulo/4887986.pdf.
3. H. Chen, H. Xu.Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.
4. C. I. Christov, G. A. Maugin, A. V. Porubov.On Boussinesq's paradigm in nonlinear wave propagation, C. R. Mécanique, 335 (2007), 521-535.
5. C. I. Christov, G. A. Maugin, M. G. Velarde.Well-posed boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E Statistical Physics Plasmas Fluids and Related Interdisciplinary Topics, 54 (1996), 3621-3638.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献