Abstract
<p style='text-indent:20px;'>In this paper, we study the existence of positive solutions of the following equation</p><p style='text-indent:20px;'><disp-formula><label/><tex-math id="FE10000">\begin{document}$\begin{equation} (P_{\lambda}) \left\{ \begin{array}{rclll} - \Delta_{p(x)} u+V(x)\vert u\vert^{p(x)-2}u & = & \lambda k(x) \vert u\vert^{\alpha(x)-2}u\\ &+& h(x) \vert u\vert^{\beta(x)-2}u&\mbox{ in }&\Omega\\ u& = &0 &\mbox{ on }& \partial \Omega. \end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right) \end{equation}$\end{document}</tex-math></disp-formula></p> <p style='text-indent:20px;'>The study of the problem <inline-formula><tex-math id="M2">\begin{document}$ (P_{\lambda}) $\end{document}</tex-math></inline-formula> needs generalized Lebesgue and Sobolev spaces. In this work, under suitable assumptions, we prove that some variational methods still work. We use them to prove the existence of positive solutions to the problem <inline-formula><tex-math id="M3">\begin{document}$ (P_{\lambda}) $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M4">\begin{document}$ W_{0}^{1,p(x)}(\Omega) $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献